Abstract

Coupled systems of integral and differential equations are studied in many papers [5], [6], [10] and [11]. Especially, the investigation for coupled systems of fractional differential equations appears in many literatures, for example [12], [13] and [14]. Here, we are concerned with the existence of solutions of some coupled systems of functional equations, differential equations of fractional orders, two-point boundary-value problems of fractional orders.

Keywords: Fractional-calculus; functional equation; Coupled systems; Continuous solutions.

1 Introduction and preliminaries

Systems appear in different problems of applied nature, for instance, see ([4]-[6], [15], [16] and [18]). Recently, Su [22] studied a two-point boundary value problem for a coupled system of fractional differential equations. Gafiychuk et al. [23] studied the solutions of coupled nonlinear fractional reaction-diffusion equations. The solvability of the coupled systems of integral equations in reflexive Banach space proved in [10]-[12]. Also, a comparison between the classical method of successive approximations (Picard) method and Adomian decomposition method of coupled system of quadratic integral equations proved in [13].

Let $L_1(J)$ be the space of Lebesgue integrable functions defined on the interval $J = [0,1]$. Let $C(J)$ be the space of all continuous functions on J with sup-norm.

Let $X = C(J) \times C(J) = \{u(t) = (x(t), y(t)) : x, y \in C(J), t \in J\}$ which is a Banach space with the norm defined as $\| (x,y) \|_X = \max\{ \| x \|_{C(J)} + \| y \|_{C(J)} \} \forall (x,y) \in X$ ([4]).

Let $AC(J)$ be the space of all absolutely continuous functions on J and denote $Y = AC(J) \times AC(J) = \{u(t) = (x(t), y(t)) : x, y \in AC(J), t \in J\}$.

The functional equations have been studied in several papers and monographs (see for examples [1]-[3], [8] and [9]). Banas [1] proved the existence of monotonic integrable solution for the functional equation

$$y(t) = f(t, y(t)), \quad t \in J$$

under certain monotonicity condition by using the technique of measure of noncompactness. Here, we shall prove the existence of continuous solution of the coupled system of functional equations

$$x(t) = f_1(t, y(t)), \quad t \in J$$

$$y(t) = f_2(t, x(t)), \quad t \in J,$$

and the coupled system of differential equations
\[\frac{dx(t)}{dt} = f_1(t, y(t)), \quad t \in J \] (3)

\[\frac{dy(t)}{dt} = f_2(t, x(t)), \quad t \in J, \]

With the boundary conditions
\[x(0) = a x(\eta), \quad y(0) = b y(\tau), \quad \eta, \tau \in J \]

then we extend our result to the coupled system of differential equations of fractional orders

\[\frac{dx(t)}{dt} = f_1(t, D^\alpha y(t)), \quad t \in J, \quad \alpha \in (0,1] \] (4)

\[\frac{dy(t)}{dt} = f_2(t, D^\beta x(t)), \quad t \in J, \quad \beta \in (0,1]. \]

Also, the coupled of Cauchy system problems
\[R^D\alpha x(t) = f_1(t, y(t)), \quad t \in J, \quad \alpha \in (0,1) \]

\[R^D\beta y(t) = f_2(t, x(t)), \quad t \in J, \quad \beta \in (0,1) \] (5)

With the initial conditions
\[I^{1-\alpha} x(t)|_{t=0} = I^{1-\beta} y(t)|_{t=0} = 0 \]

will be studied.

The existence results will be based on the following fixed-point theorems and definitions.

Theorem 1. (Schauder Fixed Point Theorem)[7]. Let Q be a nonempty, convex, compact subset of a Banach space X, and T : Q → Q be a continuous map. Then T has at least one fixed point in Q.

Let \(\beta \) be a positive real number

Definition 1. The fractional-order integral of order \(\beta \) of the function \(f \) is defined on \([a,b]\) by (see [17], [19], [20] and [21])

\[I^\beta_a f(t) = \int_a^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) \, ds, \] (6)

and when \(a = 0 \), we have \(I^\beta f(t) = I^\beta_0 f(t) \).

Definition 2. The Caputo-fractional-order derivative of order \(\beta \in (0,1] \) of the absolutely continuous function \(f \) is given by (see [17], [19], [20] and [21])

\[D^\beta f(t) = I^{1-\beta} \frac{d}{dt} f(t). \]

Definition 3. The Riemann-Liouville fractional-order derivative of order \(\beta \in (0,1) \) of the function \(f \) is given by (see [17], [19], [20] and [21])

\[R^D^\beta f(t) = \frac{d}{dt} I^{1-\beta} f(t). \]

For the properties of fractional calculus see [17], [19], [20] and [21] for example.
1 Coupled system of functional equations

Consider the following assumptions:

(i) \(f_i : J \times \mathbb{R} \to \mathbb{R}, \ i = 1, 2 \) is continuous and bounded with \(K_i = \sup_{(t,x) \in J \times \mathbb{R}} |f_i(t,x)|, \ i = 1, 2. \)

(ii) There exist two constants \(l_i, h_i, \ i = 1, 2 \) such that

\[
|f_i(t,x) - f_i(s,y)| \leq l_i |t - s| + h_i |x - y|
\]

for all \(t, s \in J \) and \(x, y \in \mathbb{R} \).

Define an operator \(T : X \to X \) as

\[
T(x,y)(t) = (f_1(t,y(t)), f_2(t,x(t)))
\]

where

\[
T_1y(t) = f_1(t,y(t)), \quad t \in J
\]

\[
T_2x(t) = f_2(t,x(t)), \quad t \in J.
\]

Then the coupled system (2) may be written as:

\[
x(t) = T_1y(t)
\]

\[
y(t) = T_2x(t).
\]

Theorem 2. Let the assumptions (i)-(ii) be satisfied. Then the coupled system of functional equations (2) has at least one solution in \(X \).

Proof.

Define

\[
U = \{ u = (x(t), y(t)) | (x(t), y(t)) \in X : ||(x,y)||_X \leq \max\{ K_1, K_2 \} \}.
\]

For \((x,y) \in U \), we have

\[
|T_1y(t)| \leq |f_1(t,x(t))| \leq K_1.
\]

Then

\[
\| T_1y(t) \| \leq K_1.
\]

and

\[
\| T_2x(t) \| \leq K_2.
\]

Therefore,

\[
\| Tu(t) \| = ||T(x,y)(t)|| = ||(T_1y(t), T_2x(t))|| = \max_{t \in J} \{ \| T_1y(t) \|, \| T_2x(t) \| \}
\]

\[
\leq \max_{t \in J} \{ K_1, K_2 \}.
\]

Then, for every \(u = (x,y) \in U \) we have \(Tu \in U \) and hence \(TU \subset U \).

It is clear that the set \(U \) is closed and convex.

Assumption (i) implies that \(T : U \to X \) is a continuous operator. Now, for \(u = (x,y) \in U, \) and for each \(t_1, t_2 \in J \) (without loss of generality assume that \(t_1 < t_2 \)), we get

\[
| T_1y(t_2) - T_1y(t_1) | \leq |f_1(t_2,y(t_2)) - f_1(t_1,y(t_1))| \leq l_1|t_2 - t_1| + h_1|y(t_2) - y(t_1)|
\]

Then

\[
\| T_1y(t_2) - T_1y(t_1) \|_{C(J)} \leq l_1|t_2 - t_1| + h_1|y(t_2) - y(t_1)|
\]

71
Similarly,

$$\| T_2 x(t_2) - T_2 x(t_1) \|_{C(J)} \leq l_2 |t_2 - t_1| + h_2 |x(t_2) - x(t_1)|$$

Now, from the definition of the operator \(T \), we get

$$Tu(t_2) - Tu(t_1) = T(x, y)(t_2) - T(x, y)(t_1)$$

$$= (T_1 y(t_2), T_2 x(t_2)) - (T_1 y(t_1), T_2 x(t_1))$$

$$= (T_1 y(t_2) - T_1 y(t_1), T_2 x(t_2) - T_2 x(t_1)),$$

and

$$\| Tu(t_2) - Tu(t_1) \| = \max_{t_1, t_2 \in J} \{ \| T_1 y(t_2) - T_1 y(t_1) \| + \| T_2 x(t_2) - T_2 x(t_1) \| \}$$

$$\leq l_1 |t_2 - t_1| + h_2 |x(t_2) - x(t_1)| + l_2 |t_2 - t_1| + h_1 |y(t_2) - y(t_1)|$$

Hence

$$| t_2 - t_1 | < \delta \implies \| Tu(t_2) - Tu(t_1) \| < \varepsilon(\delta),$$

This means that the functions of \(TU \) are equi-continuous on \(J \). Then by the Arzela-Ascoli Theorem [7] the closure of \(TU \) is compact.

Since all conditions of the Schauder fixed-point theorem hold, then \(T \) has a fixed point in \(U \) which completes the proof. ■

Example 1

Consider the following coupled system of functional equations

$$x(t) = \sqrt{t^2 + 5} + t(|\log(y(t)) + 3| + 1), \ t \in J$$

$$y(t) = \frac{1 + 2t}{10} + e^{-t^2/30}, \ t \in J.$$ \(7\)

Set

$$f_1(t, y) = \sqrt{t^2 + 5} + t(|\log(y(t)) + 3| + 1), \ t \in J$$

$$f_2(t, x) = \frac{1 + 2t}{10} + e^{-t^2/30}.$$

Then easily we can deduce that:

$$|f_1(t, z) - f_1(s, y)| = |\sqrt{t^2 + 5} + t(|\log(z(t)) + 3| + 1) - \sqrt{s^2 + 5} - s(|\log(y(s)) + 3| + 1)|$$

$$\leq |\sqrt{t^2 + 5} - \sqrt{s^2 + 5}| + t(|\log(z(t)) + 1) - (|\log(y(s)) + 3| + 1)|$$

$$+ |t(|\log(y(s)) + 3| + 1) - s(|\log(y(s)) + 3| + 1)|$$

$$\leq \frac{2}{5} |t - s| + \frac{1}{10} |z - y| + |t - s| + 3 |t - s|$$

$$\leq \frac{11}{5} |t - s| + \frac{1}{10} |z - y|$$
and

\[|f_2(t, z) - f_2(s, x)| = \left| \frac{1 + t}{10} + e^{-t} \cdot \frac{z^2}{30} - \frac{1 + s}{10} - e^{-s} \cdot \frac{x^2}{30} \right| \]

\[\leq \frac{1}{10} |t - s| + \frac{1}{30} |e^{-t} z^2 - e^{-s} x^2| + \frac{1}{30} |e^{-t} x^2 - e^{-s} z^2| \]

\[\leq \frac{1}{10} |t - s| + \frac{2}{30} |x + z| |x - z| + \frac{1}{30} |e^{-t} - e^{-s}| \]

\[\leq \frac{1}{10} |t - s| + \frac{2}{30} |x + z| |x - z| + \frac{1}{30} |e^{-s} - e^{-t}| \]

Then all the assumptions of Theorem 2 are satisfied so the coupled system of the functional equations (7) possesses at least one solution in \(X \).

Example:2

Consider the following coupled system of functional equations

\[x(t) = t + \frac{1}{3} |y(t)|, \quad t \in J \]

\[y(t) = t + \sin x(2t), \quad t \in J. \]

(8)

Set

\[f_1(t, y) = t + \frac{1}{3} |y(t)|, \quad t \in J \]

\[f_2(t, x) = t + \sin x(2t). \]

Then easily we can deduce that:

\[|f_1(t, z) - f_1(s, y)| \leq |t - s| + \frac{1}{3} |z - y| \]

and

\[|f_2(t, z) - f_2(s, x)| \leq |t + \sin z(2t) - s - \sin x(2s)| \]

\[\leq |t - s| + |\sin z(2t) - \sin x(2s)| \]

\[\leq |t - s| + |z - x| \]

Example:3

Consider the following coupled system of functional equations

\[x(t) = \frac{1}{t + 1} + \sin \left(\frac{y(t)}{4} \right), \quad t \in J \]

\[y(t) = \frac{1}{\ln(5)} \ln \left(\frac{20 + \sqrt{x(t)}}{1 + t} \right), \quad t \in J. \]

(9)

Set

\[f_1(t, y) = \frac{1}{t + 1} + \sin \left(\frac{y(t)}{4} \right), \quad t \in J \]

\[f_2(t, x) = \frac{1}{\ln(5)} \ln \left(\frac{20 + \sqrt{x(t)}}{1 + t} \right). \]
Then easily we can deduce that:

\[|f_1(t, z) - f_1(s, y)| \leq \frac{1}{t+1} + \left| \frac{\sin(z(t))}{4} - \frac{\sin(y(t))}{4} \right| \]

\[\leq \frac{1}{4} |t - s| + \frac{1}{4} |z - y| \]

and

\[|f_2(t, z) - f_2(s, x)| \leq \frac{1}{\ln(5)} \left| \ln(1+t) - \ln(1+s) \right| + \frac{1}{\ln(5)} \left| \ln(20 + \sqrt{z(t)}) - \ln(20 + \sqrt{x(s)}) \right| \]

\[\leq \frac{1}{\ln(5)} |t - s| + \frac{1}{2\sqrt{\xi}\ln(5)(20 + \sqrt{\xi})} \left| \sqrt{z(t)} - \sqrt{x(s)} \right| \]

\[\leq \frac{1}{\ln(5)} |t - s| + \frac{1}{4\xi\ln(5)(20 + \sqrt{\xi})} \left| \sqrt{z(t)} - \sqrt{x(s)} \right| \left| \sqrt{z(t)} + \sqrt{x(s)} \right| \]

\[\leq \frac{1}{\ln(5)} |t - s| + \frac{100}{804\ln(5)} |z - x| \]

2 Coupled system of Two-points boundary value problems

Now, let \(z(t) = \frac{dx(t)}{dt} \) and \(w(t) = \frac{dw(t)}{dt} \), using the boundary conditions then we get

\[
\begin{align*}
x(t) &= x(0) + Iz(t) \\
x(\eta) &= x(0) + Iz(\eta) \\
x(\eta)(1-b) &= Iz(\eta) \\
x(\eta) &= \frac{1}{1-b} Iz(\eta) \\
x(0) &= b x(\eta) = \frac{b}{1-b} Iz(\eta) \\
x(t) &= \frac{b}{1-b} Iz(\eta) + Iz(t).
\end{align*}
\]

By a similar way, we have

\[y(t) = \frac{a}{1-a} Iw(\eta) + Iw(t) \]

Therefore, the coupled system (3) has the form:

\[
\begin{align*}
z(t) &= f_1(t, \frac{a}{1-a} Iw(\eta) + Iw(t)), \quad t \in J \\
w(t) &= f_2(t, \frac{b}{1-b} Iz(\eta) + Iz(t)), \quad t \in J,
\end{align*}
\]

Definition 4. A pair of functions \((x, y)\) is a solution of (3), if the functions \(x \) and \(y \) are absolutely continuous on \(J \) and satisfy the coupled system (3).

Then we can deduce the following theorem.

Theorem 3. Let the assumptions of Theorem 2 be satisfied, then the coupled system (3) has at least one solution \((x, y) \in Y\).
3 Coupled system of differential equations of fractional order

Now, let $z(t) = \frac{dx(t)}{dt}$ and $w(t) = \frac{dy(t)}{dt}$, then we get

$$I^{1-\beta} \frac{dx(t)}{dt} = I^{1-\beta} z(t) = D^\beta x(t)$$

and similarly

$$I^{1-\alpha} \frac{dy(t)}{dt} = I^{1-\alpha} w(t) = D^\alpha y(t).$$

Then the coupled system of differential equations of fractional order (4) has the form:

$$z(t) = f_1(t, I^{1-\alpha} w(t)), \quad t \in J$$

$$w(t) = f_2(t, I^{1-\beta} z(t)), \quad t \in J.$$

Definition 5. A pair of functions (x, y) is a solution of (4), if the functions x and y are absolutely continuous on J and satisfy the coupled system (4).

Then we can deduce the following theorem.

Theorem 4. Let the assumptions of Theorem 2 be satisfied, then the coupled system (4) has at least one solution $(x, y) \in Y$.

Now, letting $\alpha, \beta \to 1$, then as a particular case of Theorem 4 we can obtain existence result of the following coupled system of functional equations

$$\frac{dx(t)}{dt} = f_1(t, \frac{dy(t)}{dt}), \quad t \in J$$

$$\frac{dy(t)}{dt} = f_2(t, \frac{dx(t)}{dt}), \quad t \in J.$$

Letting $z(t) = \frac{dx(t)}{dt}$ and $w(t) = \frac{dy(t)}{dt}$, then we get

$$z(t) = f_1(t, w(t)), \quad t \in J$$

$$w(t) = f_2(t, z(t)), \quad t \in J.$$

4 Coupled system of Cauchy problems of fractional orders

Now, let $z(t) = R^{\alpha} x(t)$ and $w(t) = R^{\beta} y(t)$, then we get

$$\frac{d}{dt} I^{1-\alpha} z(t) = z(t)$$

$$I^{1-\alpha} x(t) - I^{1-\alpha} x(t)|_{t=0} = I z(t);$$

$$I^{1-\alpha} x(t) = I z(t);$$

$$I x(t) = I^{\alpha+1} x(t);$$

$$x(t) = I^\alpha x(t).$$

Similarly

$$y(t) = I^\beta w(t).$$

Then the coupled system of differential equations of fractional order (5) has the form:

$$z(t) = f_1(t, I^\beta w(t));$$

$$w(t) = f_2(t, I^\alpha z(t)).$$
References

