An Improved Poisson Distribution and Its Application in Option Pricing

  • Samson Ogu- Egege 1 Research fellow in the Department of mathematics, Abia state university, Uturu, Nigeria
  • Bright Okore Osu MOUAU
  • Chigozie Chibuisi Department of Insurance,, University of Jos, Jos, Nigeria
Keywords: Improved Poisson, Generalized Binomial, distribution, Option Pricing


This work, introduces an improve Poisson distribution function. This improved Poisson is equipped with some financial terms, which generate a model for determining the prices of a European call and put option for two period models. Some of its important statistical properties like the mean, variance are given. It was found that the problem of option for non-dividend paying stock can be approached using an improved Poisson distribution function equipped with some financial terms. In comparison it gives exactly the numerical results with the CRR binomial model using the numerical data. An empirical example is given in a concrete setting.


Download data is not yet available.


A.D.Nyustern (2015) Binomial option pricing and model, Chapter 5pp1 5,

B. O. Osu ,S. O. Egege and Emmanuel J.Ekpeyong(2017) Application of generalized Binomial model in option pricing .American journal of applied mathematics and statistics .Vol 5 N02 pp62-71

B.Adam(2015) Factors that affect an option’s price(0nline) Available at http://the option

Chandra suresh, Dharmaraja, Aparna Mehra and Reshmakhernchandami(2013) An introduction to financial mathematics ,Narosa publishing house ,New Delhi ,Chennai, Mumbai and Kolkata .pp106-110

F.I.Chenge ,C.I.Alice(2010) Application of Binomial distribution to evaluation call option (finance ) Springer link pp 1-10

Joeuon K and Teerapabolan K (2014) An improved Poisson approximation for the binomial distribution ,Applied mathematics science Vol 8,N0 174,pp8651-8654

M. Rutkowski(2016) The CRR market model school of mathematics and statistics university Sydney ,working paper,math3075/3975

Oduro F.I and Dedu V.K (2013) The binomial and Black Scholes option pricing models ;A pedagogical review with Vba implementation ,internation journal of business information technology V0l2 ,N0 2 pp 31-37

S. O.Egege ,B. O. Osu and C.Chibuisii(2018) Anon –uniform bound approximation of Polya via Poisson , using Stein’s –Chen method and Ꙍ-function and its application in option pricing ,international journal of mathematics and statistics invention vol 6.issue 3 pp 09-20

S.Benninga (2000) Financial modeling , second edition ,the MIT press ,MA

Teerapolarn K. (2012) A point wise approximation of Generalized Binomial by Poisson Distribution ,Applied mathematics science ,Vol 6, n0.22, pp 1059-1104

llori S.A, Ajayi O.O (2000) University mathematics series 2 Algebra ,A division of Associated book –makers Nigeria limited, pp140-141.

How to Cite
Ogu- Egege, S., Osu, B., & Chibuisi, C. (2018). An Improved Poisson Distribution and Its Application in Option Pricing. MathLAB Journal, 1(2), 202-212. Retrieved from
Research Articles