Full-Rank Factorization and Moore-Penrose’s Inverse

  • Jose Luis Lopez Bonilla National Polytechnic Institute
Keywords: Moore-Penrose’s, generalized inverse, Full-rank factorization, SVD method

Abstract

C. MacDuffee apparently was the first to point out, in private communications, that a full-rank factorization of a matrix A leads to an explicit formula for its Moore-Penrose’s inverse A+. Here we apply this idea of MacDuffee and the Singular Value Decomposition to construct A+.

References

A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications, Springer, New York (2003)

E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Am. Math. Soc. 26, No. 9 (1920) 394-395

R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51 (1955) 406-413

A. Ben-Israel, The Moore of the Moore-Penrose inverse, Electron. J. of Linear Algebra 9 (2002) 150-157

R. E. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968) 182-197

G. V. Milovanovic, P. S. Stanimirovic, On Moore-Penrose inverse of block matrices and full-rank factorizations, Publications de L’Institut Mathématique, Nouvelle série, 62, No. 76 (1997) 26-40

C. Lanczos, Linear systems in self-adjoint form, Am. Math. Monthly 65, No. 9 (1958) 665-679

C. Lanczos, Extended boundary value problems, Proc. Int. Congr. Math. Edinburgh-1958, Cambridge University Press (1960) 154-181

H. Schwerdtfeger, Direct proof of Lanczos decomposition theorem, Am. Math. Monthly 67, No. 9 (1960) 855-860

C. Lanczos, Boundary value problems and orthogonal expansions, SIAM J. Appl. Math. 14, No. 4 (1966) 831-863

D. Kalman, A singularly valuable decomposition: The SVD of a matrix, The College Mathematics Journal 27 (1996) 2-23

C. Lanczos, Linear differential operators, Dover, New York (1997)

V. Gaftoi, J. López-Bonilla, G. Ovando, Singular value decomposition and Lanczos potential, in “Current topics in quantum field theory research”, Ed. O. Kovras, Nova Science Pub., New York (2007) Chap. 10, 313-316

I. Guerrero-Moreno, J. López-Bonilla, L. Rosales-Roldán, SVD applied to Dirac supermatrix, The SciTech, J. Sci. & Tech. (India), Special Issue (2012) 111-114

G. Bahadur-Thapa, P. Lam-Estrada, J. López-Bonilla, On the Moore-Penrose generalized inverse matrix, World Scientific News 95 (2018) 100-110

T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev. 2, No. 1 (1960) 15-22

H. Yanai, K. Takeuchi, Y. Takane, Projection matrices, generalized inverse matrices, and singular value decomposition, Springer, New York (2011) Chap. 3

Published
2018-08-29
Section
Research Articles