η-Einstein Solitons In N(K)-Paracontact Metric Manifolds

  • Mohd Anall Ali
Keywords: η-Einstein solitons, N(k)-Paracontact mertric mani- folds, Ricci solition, η-Einstein manifold.

Abstract

The objective of the present paper is to study the η-Einstein soli-tons on N(k)-Paracontact metric manifolds. Also, admitting the Ricci Soli-tons under certain conditions.

Downloads

Download data is not yet available.

References

A. M. Blaga, On Garadient η-Einstein solitons, Kragujevac J. of Math. 42(2) (2018), Pages

-237.

B. Cappelletti-Montano, I. Kupeli Erken and C. Murathan, Nullity conditions in paracontact

geometry, Diff. Geom. Appl. 30, 665-693, (2012).

B. Cappelletti-Montano and L. Di Terlizzi, Geometric structures associated to a contact

metric (k,µ)-space, Pacific J. Math. 246, 257-292, (2010).

J. T. Cho and M. Kimura, Ricci solitons and Real hypersurfaces in a complex space form,

Tohoku Math.J., 61(2009), 205-212.

G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132, (2016), 66-94.

R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz.

CA, 1986), Contemp. Math. 71, Amer. Math. Soc., (1988), 237-262.

S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structures on manifolds,

Nagoya Math. J. 99, 173-187, (1985).

H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann.

Math. 27(2) (1925), 91-98.

V. Martin-Molina, Paracontact metric manifolds without a contact metric counterpart, Tai-

wanese J. Math. 19, 175-191, (2015).

V. Martin-Molina, Local classification and examples of an important class of paracontact

metric manifolds, Filomat 29, 507-515, (2015).

M. D. Siddiqi, η-Einstein solitons in a δ- Lorentzian Trans Sasakian manifolds, Mathematical

Adv. in Pure and Appli. Sci. (2018) Vol. 1, 27-38.

R. Sharma, Almost Ricci solitons and K-contact geometry, Monatsh Math (2014), Vol. 175,

Isu. 4, pp. 621-628.

R. Sharma, Certain results on K-contact and (k,µ)-contact manifolds, J. Geom., 89(1-2)

(2008), 138-147.

S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36,

-60, (2009).

S. Zamkovoy and V. Tzanov, Non-existence of flat paracontact metric structures in dimension

greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform. 100, 27-34, (2011).

Published
2018-12-30
How to Cite
Ali, M. A. (2018). η-Einstein Solitons In N(K)-Paracontact Metric Manifolds. MathLAB Journal, 1(3), 345-355. Retrieved from http://purkh.com/index.php/mathlab/article/view/151
Section
Research Articles