Extension of Linear Operators and Polynomial Approximation, with Applications to Markov Moment Problem and Mazur-Orlicz Theorem

Keywords: Extension of Linear Operators, Markov Moment Problem, Mazur-Orlicz Theorem, Polynomial Approximation on Unbounded Subsets, Concrete Spaces


One recalls the relationship between the Markov moment problem and extension of linear functionals (or operators), with two constraints. One states necessary and sufficient conditions for the existence of solutions of some abstract vector-valued Markov moment problems, by means of a general Hahn-Banach principle. The classical moment problem is discussed as a particular important case. A short section is devoted to applications of polynomial approximation in studying the existence and uniqueness of the solutions for two types of Markov moment problems. Mazur-Orlicz theorem is also recalled and applied. We use general type results in studying related problems which involve concrete spaces of functions and self-adjoint operators. Sometimes, the uniqueness of the solution follows too. Most of our solutions are operator-valued or function-valued.


Download data is not yet available.


N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, Edinburgh-London, 1965.

W. Rudin, Real and Complex Analysis, Third Edition, Theta, Bucharest, 1999 (Romanian).

G. Choquet, Le problème des moments, Séminaire d’Initiation à l’Analise, Institut H. Poincaré, Paris, 1962.

K. Schmüdgen, The Moment Problem, Graduate Texts in Mathematics, Springer, 2017.

R. Cristescu, Ordered Vector Spaces and Linear Operators, Academiei, Bucharest, Romania, and Abacus Press,

Tunbridge Wells, Kent, England, 1976.

O. Olteanu, J. M. Mihăilă, Polynomial approximation on unbounded subsets and some applications, Asian Journal of Science and Technology, 9, 10 (2018), 8875-8890.

E.K. Haviland, On the moment problem for distribution functions in more than one dimension II, Amer. J. math. 58 (1936), 164-168.

O. Olteanu, Convexité et prolongement d’opérateurs linéaires, C. R. Acad. Sci. Paris, 286, Série A, (1978), 511-514.

O. Olteanu, Théorèmes de prolongement d’opérateurs linéaires, Rev. Roumaine Math. Pures Appl., 28, 10 (1983), 953-983.

O. Olteanu, Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments et à une généralisation d’un théorème de Mazur-Orlicz, C. R. Acad. Sci Paris 313, Série I, (1991), 739-742.

C. Berg, J.P.R. Christensen, and C.U. Jensen, A remark on the multidimensional moment problem, Mathematische Annalen, 243(1979), 163-169.

M. Marshall, Polynomials non–negative on a strip, Proceedings of the American Mathematical Society, 138 (2010), 1559 - 1567.

M. Marshall, Positive Polynomials and Sums of Squares, American Mathematical Society, 2008.

G. Cassier, Problèmes des moments sur un compact de R^n et décomposition des polynȏmes à plusieurs variables, Journal of Functional Analysis, 58 (1984), 254-266.

K. Schmüdgen, The moment problem for compact semi-algebraic sets, Mathematische Annalen, 289 (1991), 203-206.

B. Fuglede, The multidimensional moment problem, Expo. Math. I (1983), 47-65.

M.G. Krein M.G. and A.A. Nudelman, Markov Moment Problem and Extremal Problems, American Mathematical Society, Providence, RI, 1977.

M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematical Journal, 42, (3) (1993), 969-984.

F.H. Vasilescu, Spectral measures and moment problems. In “Spectral Analysis and its Applications. Ion Colojoară Anniversary Volume”, Theta, Bucharest, 2003, pp. 173-215

L. Lemnete-Ninulescu, O.C. Olteanu, Applications of classical and functional analysis, LAMBERT Academic Publishing, Saarbrűcken, 2017.

C. Niculescu and N. Popa, Elements of Theory of Banach Spaces, Academiei, Bucharest, 1981 (Romanian).

J.M. Mihăilă J.M., O. Olteanu, C. Udrişte, Markov – type moment problems for arbitrary compact and some noncompact Borel subsets of R^n, Rev. Roum Math Pures Appl., 52, (5-6)(2007), 655-664.

A. Olteanu, O. Olteanu, Some unexpected problems of the Moment Problem. Proc. of the 6-th Congress of Romanian Mathematicians, Bucharest, 2007, Vol I, Scientific contributions, Romanian Academy Publishing House, Bucharest, 2009, pp. 347-355.

O. Olteanu, Applications of a general sandwich theorem for operators to the moment problem, Rev. Roum. Math. Pures Appl., 41, (7-8) (1996), 513-521.

O. Olteanu, Approximation and Markov moment problem on concrete spaces. Rendiconti del Circolo Matematico di Palermo, 63 (2014), 161-172. DOI: 10.1007/s12215-014-0149-7

O. Olteanu, Markov moment problems and related approximation, Mathematical Reports, 17(67), (1) (2015), 107-117.

O. Olteanu, Applications of Hahn-Banach principle to the moment problem, Poincaré Journal of Analysis & Applications, 1, (2015), 1-28.

O. Olteanu, J. M. Mihăilă, On Markov moment problem and Mazur – Orlicz theorem, Open Access Library Journal, 4 (2017), 1-10.

O. Olteanu, J.M. Mihăilă, Operator – valued Mazur – Orlicz and moment problems in spaces of analytic function, U. P. B. Sci. Bull., Series A, 79, 1 (2017), 175-184.

C. Kleiber and J. Stoyanov, Multivariate distributions and the moment problem, Journal of Multivariate Analysis, 113 (2013), 7-18.

G.D. Lin, J. Stoyanov, Moment Determinacy of Powers and Products of Nonnegative Random Variables, J. Theor Probab (2015) 28: 1337-1353.

J Stoyanov and C. Vignat, Non-conventional limits of random sequences related to partitions of integers, asXiv: 1901 .04029v 1 [math.PR] 13 Jan 2019 (submitted to the Annals of Applied Probability).

How to Cite
Olteanu, O. (2019). Extension of Linear Operators and Polynomial Approximation, with Applications to Markov Moment Problem and Mazur-Orlicz Theorem. MathLAB Journal, 2(1), 91-109. Retrieved from http://purkh.com/index.php/mathlab/article/view/307
Research Articles