Some Properties of Strictly Quasi-Fredholm Linear Relations

  • Mnif Maher University of Sfax
  • Bouaniza Hafsa
Keywords: Perturbation, Finite Rank Operators., Strictly Quasi-Fredholm Linear Relations

Abstract

In this paper we rst give some properties of strictly quasi-Fredholm linear relations. Next we investigate the perturbation of this class under nite rank operators.

Downloads

Download data is not yet available.

Author Biographies

Mnif Maher, University of Sfax

University of Sfax, Faculty of Sciences of Sfax

Bouaniza Hafsa

University of Sfax, Faculty of Sciences of Sfax

References

T. Alvarez, On Regular Linear Relations, Acta Mathematica Sinica, English Series Jan,(2012) Vol. 28,N◦1, 183-194.

R. Arens, Operational Calculus of Linear relations, Pacific J. Math. Volume 11, Number1 (1961), 9-23.

M. Berkani, Théorème de l’application spectrale pour le spectre essentiel quasi Fredholm,Proc. Amer. Soci. 125,(1997), 763-774 .

M. Berkani, Restriction of an operator to the range of its powers, Studia Mathematica140 (2) (2000), 162-175.[5] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math J. 43 (2001)457-465.18

H. Bouaniza and M. Mnif, On strictly quasi-Fredholm linear relations and semi-B-Fredholm linear relation perturbations, Filomat vol 31,N◦20, (2017), 6337-6355.

E. Chafai, M. Mnif, Descent and Essential Descent Spectrum of Linear Relations, Ex-tracta Mathematicae vol 29, Nam. 1-2, (2014), 117-139.

Y. Chamkha, M. Mnif, The class of B-Fredholm linear relations, Complex Analysis andOperator Theory vol 9, issue 8,(2015),1681-1699

Y. Chamkha, Spectrum of matrix linear relations and study of B-Fredholm and Quasi-Fredholm linear relations, doctoral thesis,University of Sfax-Tunisie (2014).

R. Cross, On the continuous linear image of a Banach space. J. Austral. Math. Soc.(Series A) 29 (1980), 219-234.

R. Cross, Multivalued theorem for the product of linear relations, Linear Algebra andits Applications 277,(1998), 127-134.

F. Fakhfakh, M.Mnif, Perturbation theory of lower semi-Browder multivalued linearoperators, Pub. Math. Debrecen, 78/3-4 (2011), 595-606.

S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34N◦2 (1982), 317-337.[14] B. Hamid, K. Mohammed and T. Abdelaziz, Quasi-Fredholm, Saphar Spectra forC0Semigroups Generators, Ital. of pure and appl math.N◦36, (2016), (359, 366).

J. PH. Labrousse, Les opérateurs Quasi Fredholm: une généralisation des opérateurssemi-Fredholm, Rend. Circ. Math, Palermo. 29, (1980), 161-258

.[16] J. PH. Labrousse, The Kato decomposition of quasi-Fredholm relations, Operators andMatrices, 4 (2010), 1-51.

M. Mbekhta, V. Muller, On the axiomatic of spectrum II, Studia mathematica 119 (2)(1996), 128-147.

V. Muller, Spectral theory of linear operators and spectral systems in Banach algebras,Operator Theory: Advances and Applications Vol.139 Berlin (2007).

A. Sandovici, H. DE Snoo, H. Winkler: Ascent, nullity, defect, and related notions forlinear relations in linear spaces, Linear Algebra and its Applications 423, (2007) 456-497.

D. Wilcox, Multivalued semi-Fredholm Operators in Normed Linear Spaces, doctoralthesis, University of Cape Town (2002

Published
2019-08-30
How to Cite
Maher, M., & Hafsa, B. (2019). Some Properties of Strictly Quasi-Fredholm Linear Relations. MathLAB Journal, 3, 20-38. Retrieved from http://purkh.com/index.php/mathlab/article/view/366
Section
Research Articles