Weinstein Transform Generalized Weinstein Transform in Quantum Calculus

  • Youssef Bettaibi Faculty of Science, Gabes University, Tunisia
  • Hassen Ben Mohamed
Keywords: q-theory, Weinstein transform, q-integral transform

Abstract

In this paper, we introduce a q-analogue of the Weinstein operator and we investigate its eigenfunction. Next, we
define and study its associated Fourier transform which is a q-analogue of the Weinstein transform. In addition to
several properties, we establish an inversion formula and prove a Plancheral theorem for this q-Weinstein transform.

Downloads

Download data is not yet available.

Author Biographies

Youssef Bettaibi, Faculty of Science, Gabes University, Tunisia

Department of Mathematics Faculty of Sciences of Gabes. Tunisia

Hassen Ben Mohamed

Department of Mathematics Faculty of Sciences of Gabes. Tunisia

References

W. H. Abdi,Certain inversion and representation formulas for theq-Laplace transforms, Math.Zeitschr., 83, (1964), 238-249.

W. H. Abdi,Onq-Laplace transforms, Proc. Nat. Acad. Sc. (India) 29 A, (1960), 389-408.

G. E. Andrews,q-Series: their development and application in analysis, number theory, com-binatorics, physics, and computer algebra, Regional Conf. Ser. in Math., no. 66, Amer. Math.Soc., Providence, R. I. 1986.

G. E. Andrews and R. Askey,Enumeration of partitions: The role of Eulerian series andq-orthogonal polynomials, Higher combinatorics, M. Aigner, ed., Reidel, (1977), pp. 3-26.

N. Bettaibi, R. H. Bettaiebq-Analogue of the Dunkl Transform on the Real Line, Tamsui Oxf.J. Math. Sci. 25(2) (2009) 178-206.

N. Bettaibi, K. Mezlini and M. El GunichiOn rubin’s harmonic analysis and its related positivedefinite functions, Acta Mathematica Scientia 2012,32B(5):1851-1874.

Z. Ben Nahia,Fonctions harmoniques et propriet ́es de la moyenne associ ́ees a l’op ́erateur deWeinstein, Th`ese 3`eme cycle Maths. (1995) Department of Mathematics Faculty of Sciencesof Tunis. Tunisia.

Z. Ben Nahia and N. BEN SALEM,Spherical harmonics and applications as- sociated with theWeinstein operator, ” Proceedings ” de la Conf ́erence Internationale de Th ́eorie de Potentiel,I. C. P. T. 94, tenue a Kouty ( en R ́epublique Tch`eque ) du 13-20 Aoˆut 1994.

q-WEINSTEIN TRANSFORM17

Z. Ben Nahia and N. BEN SALEM,On a mean value property associated with the Weinsteinoperator, ” Proceedings ” de la Conf ́erence Internationale de Th ́eorie de Potentiel, I. C. P. T.94, tenue a Kouty ( en R ́epublique Tch`eque ) du 13-20 Aoˆut 1994.

M. Brelot, Equation de Weinstein et potentiels de Marcel Riesz, Lecture Notes in Mathematics681, S ́eminaire de Th ́eorie de Potentiel Paris, No 3, 1978, 18-38.

A. Fitouhi, N. Bettaibi and K. Brahim,The Mellin transform in Quantum Calculus, Construc-tive Approximation, vol.23, no.3, pp.305-323, 2006.

A. Fitouhi and N. Bettaibi and W. Binous,Wavelet transforms associated whith the basicBessel operator, Preprint, arXiv:math.QA/0603036, (2006).

A. Fitouhi, M. M. Hamza and F. Bouzeffour,Theq-jαBessel function. J. Approx. Theory,115, (2002), 144-166.[14] G. Gasper and M. Rahman,Basic Hypergeometric Series, Encyclopedia of Mathematics andits application, Vol 35 Cambridge Univ. Press, Cambridge, UK, 1990.

F. H. Jackson,On aq-Definite Integrals, Quarterly Journal of Pure and Applied Mathematics41, 1910, 193-203.[16] V. G. Kac and P. Cheung,Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).

T. H. Koornwinder and R. F. Swarttouw,Onq-analogues of the Fourier and Hankel transforms,Trans. Amer. Math. Soc. 333, 1992, 445-461.

Richard L. Rubin,Aq2-Analogue Operator forq2-analogue Fourier Analysis, J. Math. Analys.App. 212, (1997), 571-582.

Richard L. Rubin,Duhamel Solutions of non-Homogenousq2-Analogue Wave Equations, Proc.of Amer. Math. Soc., V 135, Nr 3, (2007), 777-785

Published
2019-08-30
How to Cite
Bettaibi, Y., & Mohamed, H. B. (2019). Weinstein Transform Generalized Weinstein Transform in Quantum Calculus. MathLAB Journal, 3, 50-65. Retrieved from http://purkh.com/index.php/mathlab/article/view/419
Section
Research Articles