Electrostatic Discharge and Energetic Materials

  • Lemi Türker Middle East Technical University
Keywords: Electrostatic discharge, Spark, Explosives, Sensitivity, Predictions

Abstract

In this short review, excerptions from the literature on electrostatic discharge  which includes  physics of electric spark, charging of organic molecules, sensitivity measurements, some theory and predictions, and electrostatic discharge   values of some group of explosives, including nitro compounds, nitramines, composites thermites, etc., have been presented.

Downloads

Download data is not yet available.

References

[1] Glor M. Ignition hazard due to static electricity in particulate processes. Powder
Technology 2003; 135-136: 223-233.
[2] Walther CD, Schacke H. Danger of electrostatic ignition in the handling of solvent
containing bulk materials+IBM explosion in a facility that manufactures coating
materials. VDI Berichte 2008; 2024: 79-96.
[3] Landsberg GS. Text book of elementary physics. V.2 Moscow :Mir Pub; 1972.
[4] Tao R, Zhao FG. Threshold of ESD damage to GMR sensor. in: Electrical
Overstress/ESD Symposium Proceedings, 2000, pp. 327-329.
[5] Glor M. Hazards due to electrostatic charging of powders. Journal of Electrostatics
1985; 16: 175-191.
[6] Thorpe DGL, Singh S, Cartwright P, Bailey AG. Electrostatic hazards in sugar
dust in storage silos. Journal of Electrostatics 1985; 16:193-207.
[7] Wu Z, Chen Y, Hu X, Liu S. Research on ESD ignition hazards of textiles. Journal of
Electrostatics 2003; 57 : 203-207.
[8] Skinner D, Olson D, Block BA. Electrostatic discharge ignition of energetic
materials. Propellants, Explosives, Pyrotechnics 1998; 23: 34-42.
[9] Talawar MB, Agrawal AP, Anniyappan M, Wani DS, Bansode MK, Gore GM.
Primary explosives: Electrostatic discharge initiation, additive effect and its relation to
thermal and explosive characteristics. Journal of Hazardous Materials 2006;137: 1074-
1078.
[10] Simpson LR, Foltz MF. LLNL small-scale static spark machine: static spark
sensitivity test. Energy ;1999: 1-15.
[11] Larson T, Dimas P, Hannaford CE. Electrostatic sensitivity testing of
explosives at Los Alamos, in: Ninth Symposium (International) on Detonation,
Naval Surface Warfare Center, 1976, p. 6.
[12] Strzelec K, Pospiech P. Progress in organic coatings improvement of mechanical
properties and electrical conductivity of polythiourethane modified epoxy coatings filled
with aluminum powder. Progress in Organic Coatings 2008; 63 : 133-138.
[13] Topçu IB, Uygunoglu T, Hocaoglu I. Electrical conductivity of setting cement
paste with different mineral admixtures. Construction and Building Materials
2012; 28 : 414-420.
[14] Williams JE, Metcalfe HC, Trinklein FE, Leffler RW. Modern physics. NY: Holt-
Rinehart and Winston Inc.;1968.
[15] Ohanian HC. Physics. NY : W.W.Norton company;1985.
[16] Crawl DA. Understanding explosions. NY: CCPS Pub. Am. Inst. Of Chemical
Engineers; 2003.
[17] Hattwig M, Steen H. Handbook of explosion prevention and protection. Weinheim:
Wiley-VCH; 2004.
[18] Tareev B. Physiscs of dielectric materails. Moscow: Mir Pub.; 1975.
[19] Atkins PW. Quanta, a handbook of concepts. London : Oxford Univ. Press; 1974.
[20] Mundl F, Show G. Quantum field theory. NY :Wiley; 1984.
[21] Hinchliffe A, Munn RW. Molecular electromagnetism. NY : Wiley; 1985.
[22] Interrante LV, Hampden SMJ. Chemistry of advanced materials. NY: Wiley-VCH;
1998.
[23] Türker L. PM3 treatment of lead styphnate and its mono ionic forms. J. of Molecular
Structure (Theochem) 2004; 681: 143-147.
[24] Türker L. Quantum chemical treatment of nitroguanidine and its mono ionic forms. J. of
Molecular Structure (Theochem) 2004; 681:177-181.
[25] Türker L. Quantum chemical treatment of EDNA. J. of Molecular Structure
(Theochem), 2004; 684: 95-98.
[26] Türker L. Quantum chemical studies on EGDN and its monovalent ions.
J. of Molecular Structure (Theochem) 2005; 717: 9-14.
[27] Türker L. An ab initio study on ethylenedinitramine and its monovalent ions
J. of Hazardous Materials 2005; A118: 67-73.
[28] Türker L. Atalar T. Computational studies on nitratoethylnitramine (NENA),
its tautomers and charged forms. J.of Hazardous Materials 2009;162: 193-203.
[29] Türker L. Contemplation on spark sensitivity of certain nitramine type explosives.
J. of Hazardous Materials 2009;169: 454-459.
[30] Türker L. Tunneling effect and impact sensitivity of certain explosives. J.of
Hazardous Materials 2009;169: 819-823.
[31] Strnad J, Majzlik J. Technical description of apparatus ESZ KTTV, Report. Institute of
Energetic materials , University of Pardubice (2001).
[32] Matyas R , Pachman J. Primary explosives. NY:Springer; 2013.
[33] Sućeska M. Testing methods of explosives. Heidelberg: Springer; 1995.
[34] Asay BW. (Ed.), Shock wave science and technology reference library, V. 5 Non-
Shock Initiation of Explosives. Heidelberg: Springer; 2010.
[35] Roux M, Auzanneau M, Brassy C. Electric spark and ESD sensitivity of reactive solids.
Part I, Experimental results and reflection factors for sensitivity test optimization.
Propellants, Explos., Pyrotech. 1993; 18: 317-324.
[36] Zeman S, Valenta P, Zeman V, Jakubko J, Kamensky Z. Electric spark sensitivity of
polynitro compounds: A comparison of some authors’ results. Chin. J. Energet. Mater.
(HanNeng CaiLiao) 1998; 6(3): 118-122.
[37] Peng Z, Zhang Y, Chen D, Miao J, Ouyang J. Experimental investigation of spark
discharge energy. J. Phys.: Conf. Series 2013; 418: 012100.
[38] Zeman S, Friedl Z, Kočí J, Pelikán V, Majzlík J. Electric spark sensitivity of nitramines.
Part I. Aspects of molecular structure. Cent. Eur. J. Energet. Mater 2006; 3(3): 27-44.
[39] Zeman S. A study of chemical micromechanism of the organic polynitro compounds
initiation, Chapter 2 in: Theoretical and computational chemistry. Energetic materials
(pp.25-52) V.13 (Eds.: P. Politzer, J.S.Murray), Part 2, Detonation, Combustion.
Amsterdam: Elsevier B ; 2003.
[40] Boddu V, Redner P. Energetic materials. Boca Raton: CRC press Taylor and Francis);
2011.
[41] U.S. Department of Defence, Allied ordnance publications. Manual of data requirements
and tests for the qualification of explosive materials for military use, AOP-7 ED.2 . 2003,
Washinton D.C.
[42] Zeman S. Struct. Bond, Sensitivities of high energy compounds. Berlin :(V.125:195-271)
Springer-Verlag; 2007.
[43] Amari S, Hosoya F, Mizishuma Y, Yoshuda T. Electrostatic spark ignitability of
energetic materials. Proc. of the 21st Int. Pyrotech. Seminar, Moscow, Sep, 1995.
[44] Zeman S, Jungová M. Sensitivity and performance of energetic materials. Propellants,
Explosives, Pyrotechnics 2016; 41: 426-451.
[45] Zeman S, Majzlík J, Kočí J. Electric spark sensitivity of polynitro arenes. Part
I. A comparison of two instruments. Central European Journal of Energetic
Materials 2007; 4: 15-24
[46] Zeman S, Kočí J. Electric spark sensitivity of polynitro compounds: Part IV. A
relation to thermal decomposition parameters. Hanneng Cailiao 2000; 8: 18-26.
[47] Koci J, Zeman V, Zeman S. Electric spark sensitivity of polynitro compounds.
Part V. A relationship between electric spark and impact sensitivities of energetic
Materials. HanNeng CaiLiao 2001; 9: 60-65.
[48] Zeman V, Koci J, Zeman S. Electric spark sensitivity of polynitro compounds:
Part II. A correlation with detonation velocities of some polynitro arenes.
Hanneng Cailiao 1999; 7: 127-132.
[49] Zeman V, Koci J, Zeman S. Electric spark sensitivity of polynitro compounds:
Part III. A correlation with detonation velocities of some nitramines. Hanneng
Cailiao 1999; 7: 172-175.
[50] Tan B, Li Z, Guo X, Li J, Han Y, Long X. Insight into electrostatic initiation
of nitramine explosives. Journal of Molecular Modeling 2017; 23: 10-15.
[51] Peng Q, Cao W, Zhou W, He Z, Jiang W, Chen W. Electrostatic hazards
assessment of nitramine explosives: Resistivity, charge accumulation and
discharge sensitivity. Central European Journal of Energetic Materials 2016;
13(3). 755-769.
[52] Wang R, Sun L, Kang Q, Li Z. Predicting the electric spark sensitivity of
nitramines from molecular structures via support vector machine. J of
Loss Prevention in the Process Industries 2013; 26: 1193-1197.
[53] Wang GX, Xiao HM, Xu XJ, Ju XH. Detonation velocities and pressures, and their
relationships with electric spark sensitivities for nitramines. Propellants, Explosives,
Pyrotechnics 2006; 31. 102-109.
[54] Keshavarz MH, Ghaffarzadeh M, Omidkhah MR, Farhadi K. New correlation
between electric spark and impact sensitivities of nitramine energetic compounds for
assessment of their safety. Zeitschrift für Anorganische und Allgemeine Chemie 2017;
643: 1227-1231.
[55] Keshavarz MH, Zohari N, Seyedsadjadi SA. Relationship between electric spark
sensitivity and activation energy of the thermal decomposition of nitramines for safety
measures in industrial processes. Journal of Loss Prevention in the Process Industries
2013; 26: 1452-1456.
[56] Keshavarz MH, Ghaffarzadeh M, Omidkhah MR, Farhadi K. Correlation between
shock sensitivity of nitramine energetic compounds based on small-scale gap test
and their electric spark sensitivity. Zeitschrift für Anorganische und Allgemeine
Chemie 2017; 643: 2158-2162.
[57] Small-scale electrostatic spark sensitivity test, ESD 2008A, A Product of the Company
OZM Research, Hrochuv Tynec, 2008 (see on www.ozm.cz/en/sensitivity-tests).
[58] Kamenský Z, Electric spark sensitivity of polynitro compounds, M.Sc. Thesis,
University of Pardubice, June 1995.
[59] Zeman S, Kamenský Z, Valent P, Jakubko J. On the electrostatic spark sensitivity
of some organic polynitro compounds. in: M. Roux (Ed.) [Proc.] Recueil des
comunications “Journees d´etudes sur la sensibilité des composants et des substances
énergét. á l´electricite statique”. Aussois, Mai 1996, pp. 197-206.
[60] Strnad J, Majzlík J. Determination of electrostatic spark sensitivity of energetic
Materials. [Proc.] 4th Seminar “New Trends in Research of Energetic Materials”,
University of Pardubice, April 2001, pp. 303-307.
[61] Jarman D, Prinse W, Bouma R. Electrostatic discharge ınitiation of CL-20: Effect
of discharge time and spark energy. [Proc.] 34th Int. Annual Conf. ICT Karlsruhe,
June 2003, pp. 71/1-71/11.
[62] Martinez PM, Bouma R, Katgerman L. Electrostatic discharge initiation
of ti+c mixtures and the thermite Al+MoO3. [Proc.] 35th Int. Annual Conf. ICT
Karlsruhe, June 2004, pp. 105/1-105/12.
[63] Smallwood J. Standardization of electrostatic test methods and electrostatic discharge
prevention measures for the world market. Journal of Electrostatics 2005; 63(6-10):
501-508.
[64] Wang G, Xian H, Ju X, Gong X. Calculation of detonation velocity, pressure and electric sensitivity of nitro arenes based on quantum chemistry. Prop.Explos.Pyro 2006;31(5): 361-368.
[65] Liu SH. Electrostatic Theory and Protection, Weapon Industry Press, Beijing,
Peoples Republic of China, 1999.
[66] Politzer P, Murray JS, Lane P. Computational determination of effects of electric
fields upon trigger linkages of prototypical energetic molecules. Int. J. of Quantum
Chemistry 2009;109(534): 534-539.
[67] Keshavarz MH, Pouretedal HR , Semsani A. Simple way to predict electrostatic
sensitivity of nitroaromatic compounds. Chemistry 2008;17(6): 470-484.
[68] Keshavarz MH. Theoretical prediction of electric spark sensitivity of nitroaromatic
energetic compounds based on molecular structure. Journal of Hazardous Materials,
2008;153(1–2). 201-206.
[69] Zohari N, Keshavarz M, Seyedsadjadi S. A novel method for risk assessment of
electrostatic sensitivity of nitroaromatics through their activation energies of thermal
decomposition. Journal of Thermal Analysis & Calorimetry . 2014; 115 (1): 93-100.
[70] Zohari N, Seyed-Sadjadi SA, Marashi-Manesh Sadegh. The Relationship between
impact sensitivity of nitroaromatic energetic compounds and their electrostatic
sensitivity. Central European Journal of Energetic Materials 2016; 13(2): 427-443.
[71] Keshavarz MH, Keshavarz Z. Relation between electric spark sensitivity and impact
sensitivity of nitroaromatic energetic compounds. ZAAC 2016; 642(4): 335-342.
[72] Keshavarz MH, Pouretedal HR, Semnani A. Reliable prediction of electric spark
sensitivity of nitramines: A general correlation with detonation pressure. Journal of
Hazardous Materials 2009;167(1–3) : 461-466.
[73] Keshavarz MH, Moghadas MH ,Tehrani MK. Relationship between the electrostatic
sensitivity of nitramines and their molecular structure. Propellants, Explosives,
Pyrotechnics 2009; 34 (2) : 136-141.
[74] Keshavarz MH. Important aspects of sensitivity of energetic compounds: A simple
novel approach to predict electric spark sensitivity, pp. 103-123 in Explosive materials:
Classification, composition and properties. ( Ed: Janssen, T.J). NY: NOVA ; 2011.
[75] Ferdowsi M, Yazdani F, Omidkhah MR, Keshavarz H. A general relationship
between electric spark and impact sensitivities of nitroaromatics and nitramines.
Zeitschrift für anorganische und allgemeine Chemie 2018; (in press).
DOI: 10.1002/zaac.201800313
[76] Wyatt RMH, Moore PWJ, Adams G, Sumner JF. The ignition of primary explosives by
electricdischarges. Proc. R. Soc. Lond. A 1958 ; 246: 189-196.
DOI: 10.1098/rspa.1958.0118. Published 29 July 1958
[77] Mel'nikov MA , Nikitin VV. Effect of aluminum on the sensitivity and electric-
spark ignition of explosives. Combustion, Explosion and Shock Waves 1972; 8(4):
396–400.
[78] Greason WD. Electrostatic discharge characteristics for the human body and
circuit packs, Journal of Electrostatics 2003; 59 : 285-300.
[79] Auzanneau M, Roux M. Electric spark and ESD sensitivity of reactive solids (primary
or secondary explosive, propellant, pyrotechnics). Part II. Energy transfer mechanisms
and comprehensive study on E50. Propellants, Explosives, Pyrotechnics 1995; 20: 96-
101.
[80] Li G, Wang C. Comprehensive study on electric spark sensitivity of ignitable gases
and explosive powders. Journal of Electrostatics 1982; 11(3): 319-332.
[81] Gerber M, Walsh G, Hopmeier M. Sensitivity of TATP to a TASER electrical output.
Journal of Forensic Sciences 2014; 59(6): 1638-1641.
[82] Hosoya F, Shiino K, Itabashi K. Electric spark sensitivity of heat resistant polynitro
aromatic compounds. Propellants, Explos., Pyrotech 1991;16: 119-122.
[83] Zeman S, Friedl Z, Kočí J. Electric spark sensitivity of polynitro arenes. part ii.
aspects of the molecular structure with utilization of the net charges of nitro groups.
Central European Journal of Energetic Materials 2007; 4 (4): 23-31.
[84] Zhi C, Cheng X, Zhao F. The correlation between electric spark sensitivity of
polynitroaromatic compounds and their molecular electronic properties. Propellants,
Explosives, Pyrotechnics 2010; 35(6): 555-560.
[85] Wang R, Jun CJ, Yong P . QSPR study on electric spark sensitivity of
nitro arenes. (ED:Xiaoming Sang, Pengcheng Wang, Liqun Ai, Yungang Li and
Jinglong Bu). Advanced Materials Research 2011; (284-286) :197-200,
[86] Klapötke TM, Stierstorfer J, Weyrauther M, Witkowski TG. Synthesis and
investigation of 2,6-bis(picrylamino)-3,5-dinitro-pyridine (PYX) and its salts.
Chemistry - A European Journal 2016; 22(25): 8619-8626.
[87] Fischer D, Klapötke TM, Stierstorfer J. 1,5-Di(nitramino)tetrazole: High sensitivity and
superior explosive performance. Angew Chem Int Ed Engl 2015 ; 54(35):10299-302.
doi: 10.1002/anie.201502919
[88] Li ZP, Lyu ZJ, Wen W, Long XP, HuangYM. Responses of HMX-based and PETN-
based explosives to electrostatic discharge. Binggong Xuebao/Acta Armamentarii 2015;
36(2): 374-378.
[89] Fischer D, Klapötke TM, StierstorferJ, Szimhardt N. 1,1′-Nitramino-5,5′-bitetrazoles.
Chemistry - A European Journal 2016; 22(14): 4966-4970.
[90] Klapötke TM, Penger A, Pflüger C, Stierstorfer J. Melt-cast materials: Combining the
advantages of highly nitrated azoles and open-chain nitramines. New Journal of
Chemistry 2016; 40(7): 6059-6069.
[91] Klapötke, TM, Stiasny B, Stierstorfer J. Synthesis and Investigation of 1,3-Bis(5-
nitraminotetrazol-1-yl)propan-2-ol and its salts. Zeitschrift fur Anorganische und
Allgemeine Chemie 2017; 643(3): 228-234.
[92] Szimhardt N, Bölter MF, Born M, Klapötke TM, Stierstorfer J. Metal salts and
complexes of 1,1'-dinitramino-5,5'-bitetrazole. Dalton Transactions 2017; 46(15): 5033-
5040.
[93] Gospodinov I, Hermann T, Klapötke TM, Stierstorfer J. Energetic compounds based on
3,4-bis(4-nitramino- 1,2,5-oxadiazol-3-yl)-1,2,5-furoxan (BNAFF). Propellants,
Explosives, Pyrotechnics 2018; 43(4): 355-363.
[94] Lu M, Zhao SX ,Chen J. Measurement and analysis of the frictional static electricity
characteristics of composite RDX. Hanneng Cailiao/Chinese Journal of Energetic
Materials 2008;16(6): 708-711.
[95] Thiruvengadathan R , Belarde GM , Bezmelnitsyn A , Shub M , Hummers WB,
Gangopadhyay K, Gangopadhyay S. Combustion characteristics of silicon –based
nanoenergetic formulations with reduced electrostatic discharge sensitivity.
Propellants, Explosives, Pyrotechnics 2012; 37 : 359-372.
[96] Weir C, Pantoya ML, Daniels MA. The role of aluminum particle size in electrostatic
ignition sensitivity of composite energetic materials. Combustion and Flame 2013;
160(10): 2279-2281.
[97] Weir C, Pantoya ML, Ramachandran G, Dallas T, Prentice DJ, Daniels M. Electrostatic
discharge sensitivity and electrical conductivity of composite energetic materials. J. of
Electrostatics 2013; 21 :77-83.
[98] Mergens MP, Wilkening W, Kiesewetter G, Mettler S, Wolf H, Hieber J, et
al. ESD-level circuit simulation impact of interconnect RC-delay on HBM and
CDM behavior. Journal of Electrostatics 2002; 54: 105-125.
[99] Reese DA, Son SF, Groven LJ. Composite propellant based on a new nitrate ester.
Propellants, Explosives, Pyrotechnics 2014; 39(5): 684-688.
[100] Plummer A, Kuznetsov VA, Gascooke J, Shapter J, Voelcker NH. Sensitiveness of
porous silicon-based nano-energetic films. Propellants, Explosives, Pyrotechnics
2016; 41(6): 1029-1035.
[101] Jiang HY, Zhao FQ, Hao HX, An T, Li M. Preparation, characterization and
electrostatic properties of GAP-coated zirconium composite particles. Binggong
Xuebao/Acta Armamentarii 2016; 37(1): 50-55.
[102] Cohen A, Yang Y, Yan QL, Pang SP, Gozin M. Highly Thermostable and
insensitive energetic hybrid coordination polymers based on graphene oxide-Cu(II)
complex. Chemistry of Materials 2016; 28(17): 6118-6126.
[103] Lyu Z, Long X, Li Z, Dai X, Deng C, He S, Li M, Yao K, Wen Y. Different ignition
responses of powdery and bulky 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) based
polymer-bonded explosives under ultra-high voltage electrostatic discharge. Central
European Journal of Energetic Materials 2018; 15(2): 283-298.
[104] Poper KH, Collins ES, Pantoya ML, Daniels MA. Controlling the electrostatic discharge ignition sensitivity of composite energetic materials using carbon nanotube additives. Journal of Electrostatics 2014; 72(5): 428-432.
[105] Foley T, Pacheco A, Malchi J, Yetter R, Higa K. Development of nanothermite
composites with variable electrostatic discharge ignition thresholds. Propellants,
Explosives, Pyrotechnics 2007; 32(6): 431-434.
[106] Shaw WL, Dlott DD, Williams RA, Dreizin EL. Ignition of nanocomposite thermites by
electric spark and shock wave. Propellants, Explosives, Pyrotechnics 2014; 39(3):
444-453.
[107] Abraham A, Nie H, Schoenitz M, Vorozhtsov AB, Lerner M, Pervikov A, Rodkevich
N, Dreizin EL. Bimetal Al–Ni nano-powders for energetic formulations. Combustion
and Flame 2016; 173: 179-186.
[108] Kong C, Yao Q, Yu D, Li S. Combustion characteristics of well-dispersed
aluminum nanoparticle streams in post flame environment. Proc. Combust. Inst. 2015;
35: 2479–2486 .
[109] Jacob RJ, Wei B, Zachariah MR. Quantifying the enhanced combustion
characteristics of electrospray assembled aluminum mesoparticles. Combust. Flame
2015;167:472–480 .
[110] Kelly D, Beland P, Brousseau P, Petre CF. Electrostatic discharge sensitivity and
resistivity measurements of Al nanothermites and their fuel and oxidant precursors.
Central European Journal of Energetic Materials 2017; 14(1): 105-119.
[111] Li Z, Zeng D, Zhou Z, Zhou M, Zhang T, Huang H, Zhang J, Yang L. A
comprehensive study of the electrostatic discharge sensitivity and chargeability of
tris(carbohydrazide)zinc perchlorate. Central European Journal of Energetic Materials
2014;11(4): 553-574.
[112] Axthammer QJ, Krumm B, Klapötke TM, Scharf R. A study of the 3,3,3-
trinitropropyl unit as a potential energetic building block. Chemistry - A European
Journal 2015; 21(45): 16229-16239.
[113] Klapötke TM, Stiasny B, Stierstorfer J, Winter CH. Energetic organic peroxides –
synthesis and characterization of 1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptanes.
European Journal of Organic Chemistry 2015; (28): 6237-6242.
[114] Bian C, Dong X, Zhang X, Zhou Z, Zhang M, Li C. The unique synthesis and energetic
properties of a novel fused heterocycle: 7-nitro-4-oxo-4,8-dihydro-[1,2,4]triazolo[5,1-
d][1,2,3,5]tetrazine 2-oxide and its energetic salts. Journal of Materials Chemistry A
2015; 3(7): 3594-3601.
[115] Klapötke TM, Schmid PC, Schnell S, Stierstorfer J. Thermal stabilization of energetic
materials by the aromatic nitrogen-rich 4,4′,5,5′-tetraamino-3,3′-bi-1,2,4-triazolium
cation. Journal of Materials Chemistry A 2015; 3(6): 2658-2668.
[116] Bian C, Zhang M, Li C, Zhou Z. 3-Nitro-1-(2H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine
(HANTT) and its energetic salts: Highly thermally stable energetic materials with low
Sensitivity. Journal of Materials Chemistry A 2015; 3(1): 163-169.
[117] Klapötke TM, Schmid PC, Schnell S, Stierstorfer J. 3,6,7-Triamino-[1,2,4]triazolo[4,3-
b][1,2,4]triazole: A Non-toxic, high-performance energetic building block with
excellent stability. Chem. Eur. J. 2015; 21: 9219 - 9228 .
[118] Klapötke TM, Witkowski TG. 5,5′-Bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole)
(TKX-55): Thermally stable explosive with outstanding properties. ChemPlusChem
2016; 81(4): 357-360.
[119] Musil T, Matyáš R, Zeman S, Růžička A, Lyčka A, Majzlík J, Vala R, Knotek P. 4,6-
Diazido-N-(2,4,6-trinitrophenyl)-1,3,5-triazin-2-amine (TNADAzT) and its silver salt-
Synthesis and characterization. Central European Journal of Energetic Materials 2017;
14(2): 304-320.
[120] Szimhardt N, Wurzenberger MHH, Beringer A, Daumann LJ, Stierstorfer J.
Coordination chemistry with 1-methyl-5: H -tetrazole: Cocrystallization, laser-ignition,
lead-free primary explosives-one ligand, three goals. Journal of Materials Chemistry
A 2017; 5(45): 23753-23765.
[121] Zhang X, Xiong H, Yang H, Cheng G, Zhang X, Xiong H, Yang H, Cheng G.
14,16,34,36,54,56,74,76-Octanitro-2,4,6,8-tetraoxa-1,3,5,7(1,3)-
tetrabenzenacyclooctaphane and its derivatives: Thermally stable explosives with
outstanding properties. New Journal of Chemistry 2017; 41(13): 5764-5769.
[122] Shlomovich A, Pechersky T, Cohen A, Yan QL, Kosa M, Petrutik N, Tal N,
Aizikovich A, Gozin M. Energetic isomers of 1,2,4,5-tetrazine-bis-1,2,4-triazoles with
low toxicity. Dalton Transactions 2017;46(18): 5994-6002.
[123] Raha K., Chhabra J.S., Static Charge Development on Explosives, Def. Sci. J., 1991,
41(1), 21-25.
[124] Kao CS, Duh YS. Accident investigation of an ABS plant. Journal of Loss Prevention
in the Process Industries 2002; 15(3): 223-232.
[125] Dahn CJ, Dastidar AG. Requirements for a minimum ignition energy standard.
Process Safety Progress 2003; 22(1): 43-47.
[104] Poper KH, Collins ES, Pantoya ML, Daniels MA. Controlling the electrostatic discharge ignition sensitivity of composite energetic materials using carbon nanotube additives. Journal of Electrostatics 2014; 72(5): 428-432.
[126] Lyu ZJ, Wen W, Liu Y, Li ZP. Static spark test of tablet and powder explosives.
Binggong Xuebao/Acta Armamentarii 2014; 35: 111-114.
[127] Grabarczyk Z. The hazard of ignition of explosive atmospheres by electrostatic
corona discharges. [Zagrozenie zapłonem atmosfer wybuchowych przez
elektrostatyczne wyładowania ulotowe]. Przemysl Chemiczny 2014; 93(2): 256-257.
[128] Collins ES, Gesner JP, Pantoya ML, Daniels MA. Synthesizing aluminum particles
towards controlling electrostatic discharge ignition sensitivity. Journal of Electrostatics
2014; 72(1): 28-32.
[129] Yu HY, Yan N, Chen SX, Wang HB. Electrostatic hazard prediction of bridge wire
electro explosive device based on the circuit simulation. Hanneng Cailiao/Chinese
Journal of Energetic Materials 2015; 23(7): 682-687.
[130] Choi K, Choi K, Nishimura K. Experimental study on the influence of the nitrogen
concentration in the air on the minimum ignition energies of combustible powders due
to electrostatic discharges. Journal of Loss Prevention in the Process Industries, 2015,
34, 163-166.
[131] Sandstrom MM ,Brown GW, Preston DN, Pollard CJ, Warner KF, Sorensen DN,
Remmers DL, Phillips JJ, Shelley TJ, Reyes JA, Hsu PC, Reynolds JG. Variation of
methods in small-scale safety and thermal testing of improvised explosives. Propellants,
Explosives, Pyrotechnics 2015; 40(1): 109-126.
[132] Wei SA, Bai CH. Contrast testing study of electrostatic monitoring method for
energetic powders. Hanneng Cailiao/Chinese Journal of Energetic Materials 2017;
25(6): 515-519.
[133] Puszynski JA, Mehta N, Oyler KD, Cheng G, Yee K, Bichay M. Improved safety and
loadability of coated DBX-1. Journal of Energetic Materials, 2017, 35(2), 233-238.
[134] Yang M, Sun Y, Zhou L. Summary of electrostatic sensitivity of EED and anti-
electrostatic measures. Proceedings of 2017 7th IEEE International Symposium on
Microwave, Antenna, Propagation, and EMC, 2018, Technologies, MAPE 2017, 184-
186.
[135] Qin L, Yan N, Hao H, Ting A, Zhao F, Feng H. Surface engineering of
zirconium particles by molecular layer deposition: Significantly enhanced
electrostatic safety at minimum loss of the energy density. Applied Surface
Science 2018; 436: 548-555.
[136] Dai J, Xu J, Wang F, Tai Y, Shen R, Ye Y. Facile formation of nitrocellulose-coated
Al/Bi2O3 nanothermites with excellent energy output and improved electrostatic
discharge safety. Materials and Design 2018; 143: 93-103.
Published
2019-04-17
How to Cite
Türker, L. (2019). Electrostatic Discharge and Energetic Materials. To Chemistry Journal, 2, 72-114. Retrieved from http://purkh.com/index.php/tochem/article/view/280
Section
Research Articles