Application of Stabilized Cefixime-AgNPs-GO Thin Films as Corrosion Inhibitors for Mild Steel Alloy

  • Md. Zaved Hossain Khan Jessore University of Science and Technology
  • Quazi Salma Siddiqua
  • Chaitaly Tarafder
  • Mahbuba Daizy
  • Mahbuba Daizy
  • Md. Sohel Ahommed
  • Md. Riajul Islam
  • Nazmen Nahar
  • Md. Rafiul Hasan
  • Md. Rashid Al- Mamun
  • Mohamed Aly Saad Aly
Keywords: Mild steel, Corrosion, Antibiotic, Silver nanoparticles, Graphene oxide, Inhibition efficiency

Abstract

In this work, the corrosion inhibition of mild steel at ambient conditions by an antibiotic in a solution that contains silver nanoparticles (AgNPs) and graphene oxide (GO) was studied. GO and AGNPs were prepared by one-step simple and ecofriendly method and characterized by different techniques. Different concentrations of the inhibitor were prepared and their inhibition efficiency in acidic media was investigated. The adsorption characteristics of the inhibitor were studied and it was found that the antibiotic (Cefixime) alone and with GO combined with AgNPs inhibit the corrosion of mild steel by being adsorbed on the surface of mild steel by a physical adsorption mechanism. The adsorption of Cefixime and GO with AgNPs on the mild steel surface was found to be spontaneous. Incorporating AgNPs and GO with Cefixime showed an additional inhibition efficiency when compared with using only Cefixime. This indicates the strong inhibition efficiency offered by incorporating the antibiotic with AgNPs and GO.

Downloads

Download data is not yet available.

Author Biographies

Quazi Salma Siddiqua

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Chaitaly Tarafder

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Mahbuba Daizy

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Mahbuba Daizy

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Md. Sohel Ahommed

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Md. Riajul Islam

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Nazmen Nahar

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Md. Rafiul Hasan

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Md. Rashid Al- Mamun

Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

Mohamed Aly Saad Aly

Department of Electronics and Information Science, Miami College of Henan University, Kaifeng, People’s

References

Singh, D. K., Kumar, S., Udayabhanu, G., and John, R. P. (2016). 4 (N, Ndimethylamino) benzaldehyde nicotinic hydrazone as a corrosion inhibitor for mild steel in 1MHCl solution: An experimental and theoretical study. Journal of Molecular Liquids, 216: 738-746.

Alaneme, K. K., Olusegun, S. J., and Adelowo, O. T. (2016). Corrosion inhibition and adsorption mechanism studies of Hunteria umbellata seed husk extracts on mild steel immersed in acidic solutions. Alexandria Engineering Journal, 55 (1): 673–681.

Ali, S. A., Saeed, M. T., and Rahman, S. V. (2003). The isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic medium. Corrosion Science, 45 (1): 253–266.

Xia, Y. and Whitesides, G. M. (1998). Soft lithography. Angewandte Chemie—International Edition, 37 (5): 550–575.

Chidiebere, M. A., Oguzie, E. E., Liu, L., Li, Y. and Wang, F. (2015). Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments. Material Chemistry & Physics, 156: 95–104.

Roy, P., Karfa, P., Adhikari, U., and Sukul, D. (2014). Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: effect of intramolecular synergism. Corrosion Science, 88: 246-253.

Abdallah, M. (2004). Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corrosion Science, 46 (8): 1981-1996.

Feng, Y. Y., Chen, S. H., Guo, W. J., Zhang, Y. X. and Liu, G. Z. (2007). Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5M H2SO4 solutions. Journal of Electroanalytical Chemistry, 602 (1): 115-122.

Guo, W. J., Chen, S. H., Feng, Y. Y. and Yang, C. J. (2007). “Investigations of triphenyl phosphate and bis-(2-ethylhexyl) phosphate self-assembled films on iron surface using electrochemical methods ,fourier transforminfrared spectroscopy, andmolecular simulations. Journal of Physical Chemistry C, 111 (7): 3109-3115.

Farguez, P., Avilés, F. and Oliva, A. I. (2008). Surf. Coat. Technol. 202: 1556.

Sabzi, M., Mirabedini, S. M., Zohuriaan, M. J., and Atai, M. (2009). Surface modification of TiO2

nano-particles with silane coupling agent andinvestigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings, 65: 222-228.

Yiu, W. M., Zhong, Z. Y. (2006). Polymer Nanocomposites, and Wood head Publishing Limited, Cambridge.

Kirkland, N. T., Schiller, T., Medheker, N., and Birbilis, N. (2012). Exploring graphene as a corrosion protection barrier. Corrosion Science, 56: 1-4.

Khan, M. Z. H., Tareq, F. K., Hossen, M. A., Roki, M. N. A. M. (2018). Green Synthesis and Characterization of Silver Nanoparticles Using Coriandrum sativum Leaf Extract. Journal of Engineering Science and Technology, 13 (1): 158-166.

Arifur, M. R., Shatez, M. A. N., Yamun, K. N. R., Papia, Y., Hossain, M. S., and Khan, M. Z. H. (2018). Preparation and characterization of graphene oxide nanofluid and its electrical conductivity. International Journal of Nano and Biomaterials, 7 (2): 102-112.

Truong, T. T. V., Selvaraj, R. K., Bishakh, R., Chi, H. L., Chak, B. W., Chia, W. C., Chien, H. C., Dave, W. C. and Shingjiang, J. L. (2018). The preparation of Graphene Oxide- Silver Nanocomposites: The Effect of Silver Loads on Gram-Positive and Gram-Negative Antibacterial Activities. Nanomaterials, 8 (3): 1-15.

Zaved, H. K., Aziz, M. A., Hasan, M. R., and Mamun, M. R. A. (2016).The role of the drug as a corrosion inhibitor for mild steel surface characterization by SEM, AFM, and FTIR. Anti-Corrosion Methods and Materials, 63 (4): 308-315.

Published
2019-08-30
How to Cite
Khan, M. Z. H., Siddiqua, Q. S., Tarafder, C., Daizy, M., Daizy, M., Ahommed, M. S., Islam, M. R., Nahar, N., Hasan, M. R., Mamun, M. R. A.-, & Aly, M. A. S. (2019). Application of Stabilized Cefixime-AgNPs-GO Thin Films as Corrosion Inhibitors for Mild Steel Alloy. To Chemistry Journal, 3, 15-24. Retrieved from http://purkh.com/index.php/tochem/article/view/391
Section
Research Articles