The Lagrangean Hydrodynamic Representation of Dirac Equation

  • Piero Chiarelli University of Pisa, Italy
Keywords: Hydrodynamic Form of Dirac Equation, Energy-Impulse Tensor of Charged Fermion Field, Gravity of Classical Charged Fermion Field


This work derives the Lagrangean hydrodynamic representation of the Dirac field that, by using the minimum action principle in the non-Euclidean generalization, can possibly lead to the formulation of the Einstein equation as a function of the fermion field.


Download data is not yet available.

Author Biography

Piero Chiarelli, University of Pisa, Italy

National Council of Research of Italy, Area of Pisa, 56124 Pisa, Moruzzi 1, Italy

Interdepartmental Center “E. Piaggio” University of Pisa, Italy


M. Aguilar et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV, Phys. Rev. Lett. 110, 141102 – Published 3 April 2013

Sahni, V., The cosmological constant problem and quintessence, Class. Quant. Grav. 19, 3435, 2002.

Patmanabhan, T., Cosmological constant: the weight of the vacuum, Phys. Rep. 380, 235, 2003.

Copeland, E., Sami, M., Tsujikawa, S., Dynamics of Dark energy, Int. J. Mod. Phys. D 15, 1753, 2006.

Hartle, J., B. and Hawking, S., W., “The wave function of the universe”, Phys. Rev. D 28, 2960, 1983.

Susskind, L., “String theory and the principle of black hole complementarity”, Phys. Rev. Lett. 71 (15): 2367-8, 1993.

Nicolai H., “Quantum gravity: the view from particle physics”,arXiv:1301.5481 [gr-qc] 2013.

Hollands, S., Wald, R., M., „Quantum field in curved space time “, arXiv 1401.2026 [gr-qc] 2014.

Wang A., Wands, D., Maartens, R., ““, arXiv 0909.5167 [hep-th] 2010.

Witte, E., “Anti De Sitter space and holography”, Adv. Theor. Math. Phys., 2, 253-91, 1998.

Corda C., “Bohr-like model for black holes” Class. Quantum Grav. 32, 195007 (2015)

Zee, A. (2010). Quantum Field Theory in a Nutshell (2nd ed.). Princeton University Press. p. 172.

F. Finster, J. Kleiner, Causal Fermion Systems as a Candidate for a Unified Physical Theory, arXiv:1502.03587v3 [mat-ph] 2015.

P. Chiarelli, The hydrodynamic representation of Klein-Gordon equation in curved space-time and the related Einstein equation: A method for the solution of the cosmological constant problem? ArXiv: 1711.06093 v5 [physics.gen-ph] (2018)

Bohm, D., Phys Rev. 85 (1952) 166; D. Bohm, Phys Rev. 85 (1952) 180.

I. Bialyniki-Birula, M., Cieplak, J., Kaminski, “Theory of Quanta”, Oxford University press, Ny, (1992) 87-111.

P. Chiarelli, “Theoretical derivation of the cosmological constant in the framework of the hydrodynamic model of quantum gravity: the solution of the quantum vacuum catastrophe?” accepted for publication on Galaxies, (2015)

Madelung, E., Quantum Theory in Hydrodynamical Form, Z. Phys. 40, 322-6 (1926).

Jánossy, L.: Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys. 169, 79 (1962).

Cabbolet, M., J., T., F., Elementary Process Theory: a formal axiomatic system with a potential application as a foundational framework for physics underlying gravitational repulsion of matter and antimatter, Annalen der Physik, 522(10), 699-738 (2010).

Morrison, P., Approximated Nature of Physiocal Symmatries, Am. J. Phys., 26 358-368 (1958).

Schiff, L., I., Sign of the gravitational mass of positron, Phys. Rev. Let., 1 254-255 (1958)

Good, M., L., K20 and the Equivalence Principle, Phys. Rev. 121, 311-313 (1961).

Chardin, G. And Rax, J., M., CP violation: A matter of (anti)gravity, Phys. Lett. B 282, 256-262 (1992).

P. Chiarelli, The antimatter gravitational field, ArXiv: 15064.08183 [quant-ph] (2015).

Chiarelli, P., The Planck law for particles with rest mass, Quantum Matt. 5, 748-51, (2016); arXiv 1503.07663 quant-ph.

Landau, L.D. and Lifsits E.M., Course of Theoretical Physics, vol.2 p. 309-335, Italian edition, Mir Mosca, Editori Riuniti 1976.

Chiarelli, P.,” The non-Euclidean Hydrodynamic Klein-Gordon Equation with perturbative Self-Interacting Field ”, Technologies, 5, 63, (2017).

How to Cite
Chiarelli, P. (2018). The Lagrangean Hydrodynamic Representation of Dirac Equation. To Physics Journal, 1(2), 146-161. Retrieved from
Research Articles