Lanczos Potential for The Weyl Tensor

  • Jose Luis Lopez Bonilla National Polytechnic Institute
  • J. Morales
  • G. Ovando
  • R. López Vázquez
Keywords: Conformal tensor, Lanczos generator, Newman-Penrose formalism, Petrov classification, Weyl-Lanczos equations, 2-spinors, Spin coefficients

Abstract

For arbitrary spacetimes with Petrov types O, N and III, we indicate general results about the  Lanczos potential for the corresponding Weyl tensor.

Downloads

Download data is not yet available.

Author Biographies

J. Morales

CBI-Área de Física Atómica Molecular Aplicada, Universidad Autónoma Metropolitana -Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas CP 02200, CDMX, México,

G. Ovando

CBI-Área de Física Atómica Molecular Aplicada, Universidad Autónoma Metropolitana -Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas CP 02200, CDMX, México,

R. López Vázquez

ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México,

References

A. Hernández-Galeana, J. López-Bonilla, R. López-Vázquez, G. R. Pérez-Teruel, Faraday tensor and

Maxwell spinor, Prespacetime Journal 6, No. 2 (2015) 88-107.

J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Maxwell, Lanczos, and Weyl spinors,

Prespacetime Journal 6, No. 6 (2015) 509-520.

P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, A. K. Rathie, Newman-Penrose equations,

Bianchi identities and Weyl-Lanczos relations, Prespacetime Journal 6, No. 8 (2015) 684-696.

J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Spin coefficients formalism, Prespacetime

Journal 6, No. 8 (2015) 697-709.

B. Man Tuladhar, J. López-Bonilla, Spinor representation of the electromagnetic field, World Scientific

News 95 (2018) 1-20.

P. Lam-Estrada, J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán, Newman-Penrose’s formalism,

World Scientific News 96 (2018) 1-12.

C. Lanczos, The splitting of the Riemann tensor, Rev. Mod. Phys. 34, No. 3 (1962) 379-389.

C. Lanczos, The Riemannian tensor in four dimensions, Annales de la Faculté des Sciences de

Universite de Clermont-Ferrand 8 (1962) 167-170.

G. Ares de Parga, O. Chavoya, J. López-Bonilla, Lanczos potential, J. Math. Phys. 30, No. 6 (1989)

-1295.

B. Gellai, Cornelius Lanczos, in ‘Physicists of Ireland’ (Eds.) M. McCartney, A. Whitaker; Inst. of

Phys. Pub., Bristol & Philadelphia (2003) 198-207.

Z. Perjés, The works of Kornél Lánczos on the theory of relativity, in ‘A panorama of Hungarian

mathematics in the twentieh century. I’, J. Horváth (Editor); Springer-Verlag, Berlin (2006).

P. O’Donnell, H. Pye, A brief historical review of the important developments in Lanczos potential

theory, EJTP 7, No. 24 (2010) 327-350.

M. Carmeli, Classical fields: general relativity and gauge theory, John Wiley, New York (1982).

S. Chandrasekhar, The mathematical theory of black holes, Oxford University Press (1983).

H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einstein’s field

equations, Cambridge University Press (2003).

E. Newman, R. Penrose, Spin-coefficients formalism, Scholarpedia 4, No. 6 (2009) 7445.

J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Some applications of the Newman-Penrose

formalism, Prespacetime Journal 7, No. 9 (2016) 1259-1266.

R. A. Harris, J. D. Zund, An algorithm for the Bel-Petrov classification of gravitational fields, Comm.

Assoc. Comp. Machinery 21 (1978) 715-717.

J. Plebañski, A. Krasiñski, An introduction to general relativity and cosmology, Cambridge University

Press (2006).

M. Acevedo, M. Enciso, J. López-Bonilla, Petrov classification of the conformal tensor, EJTP 3, No. 9

(2006) 79-82.

J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Petrov types and their canonical tetrads,

Prespacetime Journal 7, No. 8 (2016) 1176-1186.

P. J. Greenberg, The algebra of the Riemann curvature tensor in general relativity, Stud. Appl. Maths.

, No. 3 (1972) 277-308.

W. F. Maher, J. D. Zund, A spinor approach to the Lanczos spintensor, Nuovo Cimento A57, No. 4

(1968) 638-648.

J. D. Zund, Sur le spineur de Lanczos en relativité générale, Comptes Rendus Acad. Sci. (Paris) A276

(1973) 1629-1631.

J. D. Zund, The theory of the Lanczos spinor, Ann. di Mat. Pura ed Appl. 109, No. 1 (1975) 239-268.

A. H. Taub, Lanczos splitting of the Riemann tensor, Comp. Maths. Appl. 1, No. 3-4 (1975) 377-380.

R. Illge, On potentials for several classes of spinor and tensor fields, Gen. Rel. Grav. 20, No. 6 (1988)

-564.

F. Andersson, S. B. Edgar, Spin coefficients as Lanczos scalars: Underlying spinor relations, J. Math.

Phys. 41, No. 5 (2000) 2990-3001.

P. O’Donnell, Introduction to 2-spinors in general relativity, World Scientific, Singapore (2003).

G. F. Torres del Castillo, Spinors in four-dimensional spaces, Birkhäuser, Boston (2010).

B. E. Carvajal-Gámez, M. Galaz-Larios, J. López-Bonilla, On the Lorentz matrix in terms of Infeld-van

der Waerden symbols, Scientia Magna 3, No. 3 (2007) 82-84.

Ch. G. van Weert, Direct method for calculating the bound four-momentum of a classical charge, Phys.

Rev. D9, No. 2 (1974) 339-341.

J. López-Bonilla, G. Ovando, J. Rivera, On the physical meaning of the Weert potential, Nuovo Cim.

B112, No. 10 (1997) 1433-1436.

J. H. Caltenco, J. López-Bonilla, L. Ioan-Piscoran, Motion of charged particles in Minkowski spacetime,

World Scientific News 108 (2018) 18-40.

J. López-Bonilla, R. López-Vázquez, H. Torres, Petrov classification of the Liénard-Wiechert field, Int.

Frontier Sci. Lett. 1, No. 2 (2014) 16-18.

V. Gaftoi, J. López-Bonilla, G. Ovando, Lanczos potential for a rotating black hole, Nuovo Cim. B113,

No. 12 (1998) 1493-1496.

J. López-Bonilla, J. Morales, G. Ovando, A potential for the Lanczos spintensor in Kerr geometry,

Gen. Rel. Grav. 31, No. 3 (1999) 413-415.

J. H. Caltenco, J. López-Bonilla, J. Morales, G. Ovando, Lanczos potential for the Kerr metric, Chinese

J. Phys. 39, No. 5 (2001) 397-400.

J. López-Bonilla, J. Morales, G. Ovando, Kerr geometry and its Lanczos spintensor, New Advances in

Physics 8, No. 2 (2014) 107-110.

J. López-Bonilla, J. Morales, G. Ovando, Wave equation and Lanczos potential, Prespacetime

Journal 6, No. 4 (2015) 269-272.

J. López-Bonilla, L. Ioan-Piscoran, G. Pérez, Rotating black hole and a potential for its Weyl tensor,

Global J. Adv. Res. Class. Mod. Geom. 4, No. 1 (2015) 62-64.

J. López-Bonilla, G. Ovando, Lanczos spintensor for the Gödel metric, Gen. Rel. Grav. 31, No.7 (1999)

-1074.

V. Gaftoi, J. López-Bonilla, G. Ovando, Lanczos potential for the Gödel cosmological model, Czech. J.

Phys. 52, No.6 (2002) 811-813.

Z. Ahsan, J. H. Caltenco, R. Linares, J. López-Bonilla, Lanczos generator in Gödel geometry, Comm. in

Phys. 20, No. 1 (2010) 9-14.

J. López-Bonilla, G. Ovando, J. Peña, A Lanczos potential for plane gravitational waves, Found. Phys.

Lett. 12, No. 4 (1999) 401-405.

J. López-Bonilla, J. Morales, D. Navarrete, Lanczos spintensor for empty type D spacetimes, Class.

Quantum Grav. 10, No. 10 (1993) 2153-2156.

I. Guerrero-Moreno, J. López-Bonilla, A. Rangel-Merino, Lanczos spintensor for several spacetimes,

The Icfai Univ. J. Phys. 2, No. 1 (2009) 7-17.

J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Kinnersley’s metrics, Prespacetime

Journal 7, No. 9 (2016) 1267-1274.

A. H. Hasmani, R. Panchal, Lanczos potential for some non-vacuum spacetimes, Eur. Phys. J. Plus 131,

No. 9 (2016) 336-341.

A. H. Hasmani, A. C. Patel, R. Panchal, Lanczos potential for Weyl metric, Prajña 24-25 (2017) 11-14.

F. Andersson, S. B. Edgar, Existence of Lanczos potentials and superpotentials for the Weyl spinor /

tensor, Class. Quantum Grav. 18, No. 12 (2001) 2297-2304.

F. Andersson, S. B. Edgar, Local existence of symmetric spinor potentials for symmetric (3, 1) – spinors

in Einstein space-times, J. Geom. Phys. 37, No. 4 (2001) 273-290.

J. López-Bonilla, R. López-Vázquez, J. Morales, G. Ovando, Lanczos spinor for the type D empty

spacetimes, Prespacetime Journal 7, No. 13 (2016) 1729-1731.

Published
2018-12-30
How to Cite
Bonilla, J. L., Morales, J., Ovando, G., & Vázquez, R. (2018). Lanczos Potential for The Weyl Tensor. To Physics Journal, 1(3), 189-195. Retrieved from http://purkh.com/index.php/tophy/article/view/142
Section
Research Articles