Fractal Analysis of the Lunar Free-air Gravity Field


  • Rosen Georgiev Iliev South-West University “Neofit Rilski”


Moon, Lunar, Gravity field, Anomalies, Fractal


Recent dedicated lunar gravity mission- Gravity Recovery and Interior Laboratory (GRAIL) provided high-resolution gravity field data for the Moon. The collected data are the starting material for the construction of the latest gravity model GRGM1200A, up to a degree and order 1200° and with sensitivity down to <5 km resolution. This article present the results of the study of the probable fractal structure of the lunar “free-air” gravity field, based on this data. The "free-air" gravity disturbances are the gravity perturbations computed at the reference radius of 1738 km. They show the gravity variations as measured by the spacecraft, and thus include contributions from both the surface topography and any sub-surface bodies. The results would throw a new light on the nature of the geophysical processes and phenomena that take place on the Moon.


Download data is not yet available.


[1] Ranguelov, B., Ivanov, Y. (2017) Fractal properties of the elements of Plate tectonics. Journal of mining and Geological Sciences. Vol. 60, Part 1, Geology and Geophysics, 83-89.
[2] Ranguelov, B., Dimitrova, S., Gospodinov, D., Spassov, E., Lamykina, G., Papadimitriou, E., Karakostas, V. (2004) Fractal properties of the South Balkans seismotectonic model for seismic hazard assessment, Proceedings 5th Intl. Symposium on East Mediterranean Geology, Thessalonica, 643-646.
[3] Tzankov, Tz., Iliev, R., Ranguelov, B. (2018) Fractal structure of the positive free-air gravity anomalies within the Balkan Peninsula. To Physics Journal. Vol.1, №3, Geology and Geophysics, 225-233.
[4] Bak, P., Chen, K. (1995) Fractal dynamics of earthquakes. Fractals in the Earth Sciences, Plenum Press, New York, 227-235.
[5] Bhattacharya, P., Chakrabarti,B.K., Kamal, Samanta, D. (2009) Fractal models of earthquake dynamics. Reviews of Nonlinear Dynamics and Complexity, ed. by H. G. Schuster, Wiley - VCH Verlag GmbH & Co. KGaA, 107 – 158.
[6] Legrand, D. (2002) Fractal dimensions of small, intermediate and large earthquakes. Bulletin of the Seismological Society of America, Vol. 92, No. 8, 3318–3320.
[7] Matsuzaki, М. (1994) Philosophical Transactions: Physical Sciences and Engineering. Vol. 348, No. 1688,, 449-457.
[8] Mittag, R. (2003) Fractal analysis of earthquake swarms of Vogtland/NW-Bohemia intraplate seismicity. Journal of Geodynamics, 35, 1–2, 173-189.
[9] Öztürk, S. (2008) Statistical correlation between b-value and fractal dimension regarding Turkish epicentre distribution. Earth Sciences Research Journal, 16, 2, 103-108.
[10] Pailoplee, S., Choowong, M. (2014) Earthquake frequency-magnitude distribution and fractal dimension in mainland Southeast Asia. Earth,Planets and Space, 6, 1-8.
[11] Srivardhan, V., Srinu, U. (2014) Potential of Fractal Analysis of Earthquakes through Wavelet Analysis and Determination of b Value as an Aftershock Precursor: A Case Study Using Earthquake Data between 2003 and 2011 in Turkey. Journal of Earthquakes, vol. 2014, 5 p.
[12] Tosi, Р., De Rubeis, V., Loreto,V., Pietronero, L. (2008) Space–time correlation of earthquakes. Geophysical Journal International, Vol. 173, Issue 3, 932–941;
[13] Mandelbrot, B.B. (1967) How long is the Coast of Britannia? Statistical self-similarity and fractional dimension. Science, 156, 636-638.
[14] Burrough, P.A., (1981) Fractal dimension of landscapes and others environmental data. Nature, 294, 240-242.
[15] Hastings, H.M., Sugihara, Н. (1993) FRACTALS: A User's Guide for the Natural Sciences. Oxford Science Publications, 235 p.
[16] Meybeck, M. (1995) Global distribution of lakes. In: Lerman, A., Imboden, D.M., Gat, J.R. (Eds.), Physics and Chemistry of Lakes, 2nd ed., Springer-Verlag, Berlin, 1–35.
[17] Tzankov, Tz., Iliev, R., Mitkov, I., Stankova, Sv. (2018) About Fractal Geometry of the Glacial Cirques in Rila and Pirin Mountains (Southwest Bulgaria). Universal Journal of Geoscience, 6, 73-77. Doi: 10.13189/ujg.2018.060303.
[18] Mancinelli, P., Pauselli, C., Perugini, D., Lupattelli, A., Federico, C. (2014) Fractal Dimension of Geologically Constrained Crater Populations of Mercury. Pure and Applied Geophysics, Springer Verlag, Volume 172, Issue 7, 1999–2008.
[19] Turcotte, D. (1987) A fractal interpretation of topography and geoid spectra on the earth, moon, Venus, and Mars. Journal of Geophysical Research, vol. 92, 597-601.
[20] Demin, S.A., Andreev, A.O., Demina, N.Y., Nefedyev, Y.A. (2017) The fractal analysis of the gravitational field and topography of the Mars. J. Phys.: Conf. Ser. 929 012002, 1-7. Doi :10.1088/1742-6596/929/1/012002
[21] Demin, S.A., Andreev, A.O., Demina, N.Y., Nefedyev, Y.A. (2018) The fractal analysis of the topography and gravitational field of Venus. J. Phys.: Conf. Ser. 1038 012020, 1-6. Doi :10.1088/1742-6596/1038/1/012020
[22] Nefedjev, A.Y. (2003) Lunar Surface Research Using Fractal Analysis. The Journal of the Eurasian Astronomical Society, Vol. 22, Issue 4-5, 631-632.
[23] Baldassarri,A., Montuori,M., Prieto-Ballesteros,O., Manrubia, S.C. (2008) Fractal properties of isolines at varying altitude revealing different dominant geological processes on Earth. J. Geophys. Res., 113, E09002, doi:10.1029/2007JE003066.
[24] Huang, X, Jiang, X., Yu, Т., Yin, H. (2009) Fractal-Based Lunar Terrain Surface Modeling for the Soft Landing Navigation. Second International Conference on Intelligent Computation Technology and Automation, Changsha, Hunan, China, 53-56. doi: 10.1109/ICICTA.2009.250
[25] Kumar, A.V.S., Sekhar, R.P.R., Tiwari, R.M. (2016) Fractal Analysis of lunar Gravity anomalies over the Basins of Lunar Farside. 19th National Space Science Symposium (NSSS-2016), Poster Session, Kerala, India.
[26] Goossens, S., Lemoine, F.G., Sabaka, T.J., Nicholas, J.B., Mazarico, E., Rowlands, D.D., Loomis, B.D., Chinn, D.S., Neumann, G.A., Smith, D.E., Zuber, M.T. (2016) A Global Degree and Order 1200 Model of the Lunar Gravity Field using GRAIL Mission Data. 47th Lunar and Planetary Science Conference, Houston, TX, Abstract #1484.
[27] Mandelbrot B. (1982) The Fractal Geometry of Nature. San Francisco: W.H. Freeman & Co., San Francisco, 68 p.
[28] Korvin, G. (1992) Fractal models in the Earth Sciences. New York: Elsevier, 236 p.
[29] Turcotte, D. (1986) Fractals and Fragmentation. Journal of Geophysical Research. 91, B2, 1921-1926.
[30] Hirata T. (1989) Fractal dimension of fault system in Japan: Fractal structure in Rock geometry at various scales. Pure and Applied Geophysics, 131, 157-173.
[31] Turcotte, D. (1986) A fractal model of crustal deformation. Tectonophysics, 132, 361-369.
[32] Ranguelov, B., Dimitrova, S. (2002) Fractal model of the recent surface earth crust fragmentation in Bulgaria, Comptes Rendus de l’Academy Sciences Bulgaria. 55, 3, 25-28.
[33] Ranguelov, B., Dimitrova, S., Gospodinov, D. (2003) Fractal configuration of the Balkan seismotectonic model for seismic hazard assessment, Proceedings BPU-5, Vrnjacka Banja, Serbia and Montenegro, 1377-1380.
[34] Ranguelov, B. (2010) Nonlinearities and fractal properties of the European-Mediteranean seismotectonic model. Geodynamics & Tectonophysics, 1, 3, 225–230.
[35] Smith, D.E., Zuber, M.T., Neumann, G.A., Mazarico, E., Head, J.W., III, Torrence, M.H. and the LOLA Science Team (2011) Results from the Lunar Orbiter Laser Altimeter (LOLA): global, high-resolution topographic mapping of the Moon, Lunar Planetary Science Conference XLII, Abstract 2350.



How to Cite

Iliev, R. G. (2019). Fractal Analysis of the Lunar Free-air Gravity Field. To Physics Journal, 2, 126-133. Retrieved from



Research Articles