# Ion Acoustic Shock Waves in a Six Component Cometary Plasma

### Abstract

The effect of pair ions on the formation and propagation characteristics of Ion-Acoustic (IA) shock waves in a six-component cometary plasma composed of two hot and one colder electron component, hot ions, and heavier pair ions is studied. The colder and one hotter component of electrons together with the lighter hydrogen ions are modelled by kappa distributions. The other hotter electron component is described by a q-nonextensive distribution. The KdVB equation is derived for the system and its solution plotted for different kappa values, oxygen ion densities, kinematic viscosities as well as the temperature ratios of ions. In the aforesaid plasma, the shock wave exhibits a transition towards solitary structure. It is found that the strength of shock profile decreases with an increase in both temperatures of the positively charged oxygen ions and negatively charged oxygen ion densities. However, the strength of the shock wave decreases with a decrease of positively charged oxygen ion densities.

### Downloads

### References

R.Z. Sagdeev, M.A. Leontovich, Cooperative phenomena and shock waves in collisionless plasmas, Reviews of Plasma Phys. 4,(1966) 23.

H. Ikezi, R. Taylor, D. Baker, Formation and interaction of ion-acoustic solitons, Phys. Rev. Lett. 25, (1970) 11.

A. A. Mamun, P.K. Shukla, Cylindrical and spherical dust ion–acoustic solitary waves, Phys. Plasmas 9, (2002) 1468.

J. K. Xue, Cylindrical and spherical dust–ion acoustic shock waves, Phys. Plasmas 10, (2003) 4893.

B. Sahu, R. Roychoudhury, Quantum ion acoustic shock waves in planar and nonplanar geometry, Phys. Plasmas 14,(2007) 2310.

P. K. Shukla, A. A. Mamun, Solitons, shocks and vortices in dusty plasmas, New J. Phys. 5,(2003) 17.

P. K. Shukla, A. A. Mamun, Dust-acoustic shocks in a strongly coupled dusty plasma, IEEE Tr. PS. 29, (2001) 221.

A. A. Mamun, B. Eliasson, P. K. Shukla, Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution, Phys. Letters A 332, (2004) 412.

S. Ghosh, M.R. Gupta, Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma,Phys. Plasmas 12, (2005) 2306.

H. R. Pakzad, Dust acoustic shock waves in strongly coupled dusty plasmas with kappa-distributed ions,Ind. J. Phys. 86, (2012) 743.

A. M. El-Hanbaly, E. K. El-Shewy, M. Sallah, H. F. Darweesh, Linear and nonlinear analysis of dust acoustic waves in dissipative space dusty plasmas with trapped ions, J. Theor. Appl. Phys. 9, (2015) 167.

V. M. Vasyliunas, Low‐energy electrons on the day side of the magnetosphere, J. Geophys. Res.73, (1968) 7519.

M. P. Leubner, A nonextensive entropy approach to kappa-distributions, Astrophysics and Space Science282, (2002) 573.

C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys.52, (1988)479.

M. Mahdizadeh, E. Zamanzade, Goodness-of-fit testing for the Cauchy distribution with application to financial modeling, To appear in Journal of King Saud University – Science(2019).

E. Zamanzade, M. Mahdizadeh, Goodness of fit tests for Rayleigh distribution based on Phi-divergence,RevistaColombiana de Estadstica 40, (2017) 279.

E. Zamanzade, M. Mahdizadeh, Entropy estimation from ranked set samples with application to test of fit, RevistaColombiana de Estadstica 40, (2017) 223.

M. Mahdizadeh, E. Zamanzade, New goodness of fit tests for Cauchy distribution, Journal of Applied Statistics 44, (2017) 1106.

E. Zamanzade, M. Mahdizadeh, Entropy estimation from judgement post stratified data, Pakistan Journal of Statistics and Operation Research7, (2016) 625.

L. Liyan, D. Jiulin, Energy fluctuations and the ensemble equivalence in Tsallisstatistics,Physica A: Statistical Mechanics and its Applications387, (2008) 5417.

H. Alinejad, Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons,Astrophysics and Space Science327, (2010) 131.

H. R. Pakzad, Dust acoustic solitary and shock waves in coupled dusty plasmas with variable dust charge and vortex-like ion distribution, Astrophysics and Space Science330, (2010) 301.

H. R. Pakzad, Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons, Astrophysics and Space Science331, (2011) 169.

I. D. Dubinova, A. E. Dubinov, The theory of ion-sound solitons in plasma with electrons featuring the Tsallis distribution, Technical Physics Letters32, (2006) 575.

R. Amour, M. Tribeche, Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution, Phys. Plasmas 17, (2010) 3702.

R. Amour, M. Tribeche, Semi-analytical study of variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive ion velocity distribution, Commun. Nonlinear Sci. Numer. Simulat. 16, (2011) 3533.

A. Sabetkar, D. Dorranian, Non-extensive effects on the characteristics of dust-acoustic solitary waves in magnetized dusty plasma with two-temperature isothermal ions, J. PlasmaPhysics80, (2014) 565.

F. M. Ipavich, A. B. Galvin, G. Gloeckler, D. Hovestadt, B. Klecker, M. Scholer, Comet Giacobini-Zinner: In situ observations of energetic heavy ions, Science 232, (1986) 366.

M. A. Coplan, K. W. Ogilvie, M. F. A’Hearn, P. Bochsler, J. Geiss, Ion composition and upstream solar wind observations at comet Giacobini‐Zinner, J.Geophys.Res. 92,(1987) 39.

P. Chaizy, H. Reme, J.A. Sauvaud, C. d’Uston, R. P. Lin, D. E. Larson, D. L. Mitchell, R. D. Zwickl, D. N. Baker, S. J. Bame, W. C. Feldman, S. A. Fuselier, W. F. Huebner, D. J. McComas, D. T. Young, Negative ions in the coma of comet Halley, Nature 349, (1991) 393.

R. D. Zwickl, D. N. Baker, S. J. Bame, W. C. Feldman, S. A. Fuselier, W. F. Huebner, D. J. McComas, D. T. Young, Three component plasma electron distribution in the intermediate ionized coma of comet Giacobini- Zinner, Geophys. Res. Lett. 13, (1986) 401.

G. Sreekala, M. Manesh, T. W. Neethu, V. Anu, S. Sijo, C. Venugopal, Rogue Waves in Multi-Ion Cometary Plasmas, Plasma Phys. Rep. 44, (2018) 102.

M. R. Voelzke, L. S. Izaguirre, Morphological analysis of the tail structures of comet P/Halley 1910 II, Planetary and Space Science 65, (2012) 104.

M. Manesh, T. W. Neethu, J. Neethu, S. Sijo, G. Sreekala, C. Venugopal, Korteweg–deVries–Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions,Journal of Theoretical and Applied Physics10, (2016) 289.

S. Hussain, N. Akhtar, Korteweg-deVries-Burgers equation in multi-ion and pair-ion plasmas with Lorentzian electrons, Phys. Plasmas 20, (2013) 2305.

W. Malfliet, Solitary wave solutions of nonlinear wave equations,Am. J. Phys.60,(1992) 650.

W. Malfliet, The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations,J. Comput. Appl. Math. 164,(2004) 529.

A. L. Brinca, B. T. Tsurutani, Unusual characteristics of electromagnetic waves excited by cometary new born ions with large perpendicular energies, Astron. Astrophys. 187, (1987) 311.

T. W. Broiles, G. Livadiotis, J. L. Burch, K. Chae, G. Clark, T. E. Cravens, R. Davidson, A. Erikkson, R. A. Frahm, S. A. Fuselier, J. Goldstein, R. Goldstein, P. Henri, H. Madanian, K. Mandt, P. Mokashi, C. Pollock, A. Rahmati, M. Samara, S. J. Schwartz, Characterizing cometary electrons with kappa distributions, J. Geophys. Res. 121, (2016) 7407.

*To Physics Journal*,

*3*, 24-36. Retrieved from http://purkh.com/index.php/tophy/article/view/392

Copyright (c) 2019 Venugopal Chandu, Manesh Michael, Gopika Babu, Celin Mary, G. Sreekala, Sijo Sebastian

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain the copyright of their manuscripts, and all Open Access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided that the original work is properly cited.

** To Physics Journal** allow the author(s) to retain publishing rights without restrictions.