Thermal and exergy analysis of the use of the lens in parabolic trough.

use of the lens in parabolic trough

  • mya jamalabadi Dongguk university
  • Pezhman Ghareghani
  • Sadegh Alikhani
  • Iman Khatami
Keywords: Parabolic trough solar collector, sep Optical lens, sep Angstrom method, sep numerical simulation

Abstract

The aim of current study, is looking for a new way to increase the efficiency of the solar collector parabolic trough analytical and experimentally. To do a collector through is produced and equiped with 23 lenses located above the absorber tube in a row. The use of the lens increase the efficiency of Parabolic trough collector up to 14 percent. The system analysed theorically and evaluates by first and second law of thermodynamics. For the estimation of solar radiation the two methods of maximum probability and Prescott's angstrom methods is used, and compared with the data of the pyrometer device (radiation gauge). By the statistical criteria, the Angstrom method is more accurate compared to the maximum probability. Various components of heat transfer is analyzed through the system evolution versus time. The results show that the maximum exergy efficiency of the system was about 52 percent. As well the use of lens enhance the exergy efficiency of the system.

Downloads

Download data is not yet available.

Author Biographies

mya jamalabadi, Dongguk university

Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Korea

Pezhman Ghareghani

Chabahar Maritime University, Chabahar, Iran

Sadegh Alikhani

Chabahar Maritime University, Chabahar, Iran

Iman Khatami

Chabahar Maritime University, Chabahar, Iran

References

̇I. H. Yılmaz, A. Mwesigye, Modeling, simulation and performance analysis of parabolic troughsolar collectors: A comprehensive review, Appl Energy 225 (2018) 135–174.

S. A. Kalogirou, Solar energy engineering: processes and systems, Academic Press, 2013.

M. Fan, H. Liang, S. You, H. Zhang, W. Zheng, J. Xia, Heat transfer analysis of a new volumetricbased receiver for parabolic trough solar collector, Energy 142 (2018) 920–931.

J. P. Freedman, H. Wang, R. S. Prasher, Analysis of nanofluid-based parabolic trough collectorsfor solar thermal applications, J Sol Energ Eng 140 (5) (2018) 051008.10

MathLAB Journal Vol 3 (2019)http://purkh.com/index.php/mathlab

V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, R. A. Taylor, Solar energyharvesting using nanofluids-based concentrating solar collector, J Nanotechnol Eng Med 3 (3)(2012) 031003.

H. Tyagi, P. Phelan, R. Prasher, Predicted efficiency of a low-temperature nanofluid-based directabsorption solar collector, J Sol Energ Eng 131 (4) (2009) 041004.

T. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, R. A. Taylor, Nanofluid-based directabsorption solar collector, J Renew Sustain Ener 2 (3) (2010) 033102.

E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, P. Sansoni, Potential ofcarbon nanohorn-based suspensions for solar thermal collectors, Sol Energ Mat Sol C 95 (11)(2011) 2994–3000.

B. J. Lee, K. Park, T. Walsh, L. Xu, Radiative heat transfer analysis in plasmonic nanofluidsfor direct solar thermal absorption, J Sol Energ Eng 134 (2) (2012) 021009.

A. Veeraragavan, A. Lenert, B. Yilbas, S. Al-Dini, E. N. Wang, Analytical model for the designof volumetric solar flow receivers, Int J Heat Mass Tran 55 (4) (2012) 556–564.

H. K. Gupta, G. D. Agrawal, J. Mathur, Investigations for effect of Al2O3-H2O nanofluid flowrate on the efficiency of direct absorption solar collector, Case Studies in Thermal Eng 5 (2015)70–78.

V. Cregan, T. Myers, Modelling the efficiency of a nanofluid direct absorption solar collector,Int J Heat Mass Tran 90 (2015) 505–514.

T. B. Gorji, A. A. Ranjbar, Geometry optimization of a nanofluid-based direct absorption solarcollector using response surface methodology, Sol Energy 122 (2015) 314–325.

J. Jeon, S. Park, B. J. Lee, Analysis on the performance of a flat-plate volumetric solar collectorusing blended plasmonic nanofluids, Sol Energy 132 (2016) 247–256.

C. Qin, K. Kang, I. Lee, B. J. Lee, Optimization of a direct absorption solar collector withblended plasmonic nanofluids, Sol Energy 150 (2017) 512–520.

K. H. Won, B. J. Lee, Effect of light scattering on the performance of a direct absorption solarcollector, Front Energy 12 (1) (2018) 169–177.

C. Qin, K. Kang, I. Lee, B. J. Lee, Optimization of the spectral absorption coefficient of aplasmonic nanofluid for a direct absorption solar collector, Sol Energy 169 (2018) 231–236.

A. R. Mallah, S. Kazi, M. N. M. Zubir, A. Badarudin, Blended morphologies of plasmonicnanofluids for direct absorption applications, Appl Energy 229 (2018) 505–521.

J. Jeon, S. Park, B. J. Lee, Optical property of blended plasmonic nanofluid based on goldnanorods, Opt Express 22 (104) (2014) A1101–A1111.

M. Chen, Y. He, J. Zhu, B. Jiang, Y. Huang, An experimental investigation on sunlight absorp-tion characteristics of silver nanofluids, Sol Energy 115 (2015) 85–94.11 MathLAB Journal Vol 3 (2019)http://purkh.com/index.php/mathlab

M. Chen, Y. He, J. Zhu, D. R. Kim, Enhancement of photo-thermal conversion using goldnanofluids with different particle sizes, Energ Convers Manage 112 (2016) 21–30.

M. Du, G. H. Tang, Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheetsfor solar energy harvesting, Sol Energy 137 (2016) 393–400.

V. Bhalla, H. Tyagi, Parameters influencing the performance of nanoparticles-laden fluid-basedsolar thermal collectors: A review on optical properties, Renew Sustain Energ Rev 84 (2018)12–42.

Z. Wang, Z. M. Zhang, X. Quan, P. Cheng, A numerical study on effects of surrounding medium,material, and geometry of nanoparticles on solar absorption efficiencies, Int J Heat Mass Tran116 (2018) 825–832.

A. Menbari, A. A. Alemrajabi, A. Rezaei, Heat transfer analysis and the effect of CuO/waternanofluid on direct absorption concentrating solar collector, Appl Therm Eng 104 (2016) 176–183.

G. J. O’Keeffe, S. L. Mitchell, T. G. Myers, V. Cregan, Modelling the efficiency of a low-profilenanofluid-based direct absorption parabolic trough solar collector, Int J Heat Mass Tran 126(2018) 613–624.

G. J. O’Keeffe, S. L. Mitchell, T. G. Myers, V. Cregan, Modelling the efficiency of a nanofluid-based direct absorption parabolic trough solar collector, Sol Energy 159 (2018) 44–54.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley,1983.

A. De Risi, M. Milanese, D. Laforgia, Modelling and optimization of transparent parabolictrough collector based on gas-phase nanofluids, Renew Energy 58 (2013) 134–139.

F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Principles of heat and mass transfer,John Wiley & Sons, 2013.

T. B. Gorji, A. A. Ranjbar, A numerical and experimental investigation on the performance of alow-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids,Sol Energy 135 (2016) 493–505.[32] Z. D. Cheng, Y. L. He, F. Q. Cui, B. C. Du, Z. J. Zheng, Y. Xu, Comparative and sensitiveanalysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing opticalmodel, Appl Energy 115 (2014) 559–572.

Q. Li, C. Zheng, S. Mesgari, Y. L. Hewkuruppu, N. Hjerrild, F. Crisostomo, G. Rosengarten,J. A. Scott, R. A. Taylor, Experimental and numerical investigation of volumetric versus surfacesolar absorbers for a concentrated solar thermal collector, Sol Energy 136 (2016) 349–364.

D. Rativa, L. A. G ́omez-Malag ́on, Solar radiation absorption of nanofluids containing metallicnanoellipsoids, Sol Energy 118 (2015) 419–425.

Solutia, Therminol VP-1 Vapor Phase, Liquid Phase Heat Transfer Fluid 12◦C to 400◦C,http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf(2013).12

MathLAB Journal Vol 3 (2019)http://purkh.com/index.php/mathlab

A. Lenert, E. N. Wang, Optimization of nanofluid volumetric receivers for solar thermal energyconversion, Sol Energy 86 (1) (2012) 253–265.

S. Dugaria, M. Bortolato, D. Del Col, Modelling of a direct absorption solar receiver usingcarbon based nanouids under concentrated solar radiation, Renew Energy 128 (2018) 495–508.

B. E. Launder, D. B. Spalding, The numerical computation of turbulent flows, in: NumericalPrediction of Flow, Heat Transfer, Turbulence and Combustion, Elsevier, 1983, pp. 96–116.

T. L. Bergman, F. P. Incropera, D. P. DeWitt, A. S. Lavine, Fundamentals of heat and masstransfer, John Wiley & Sons, 2011.

W. M. Kays, Turbulent prandtl number – where are we?, J Heat Transf 116 (2) (1994) 284–295.

R. Forristall, Heat transfer analysis and modeling of a parabolic trough solar receiver imple-mented in engineering equation solverdoi:10.2172/15004820.

G. Xu, W. Chen, S. Deng, X. Zhang, S. Zhao, Performance evaluation of a nanofluid-baseddirect absorption solar collector with parabolic trough concentrator, Nanomaterials 5 (4) (2015)2131–2147.

F. Wang, Q. Lai, H. Han, J. Tan, Parabolic trough receiver with corrugated tube for improvingheat transfer and thermal deformation characteristics, Appl Energy 164 (2016) 411–424.

W. C. Swinbank, Long-wave radiation from clear skies, Q J Roy Meteor Soc 89 (381) (1963)339–348.

J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons,2013.

V. E. Dudley, G. J. Kolb, A. R. Mahoney, T. R. Mancini, C. W. Matthews, M. Sloan, D. Kearney,Test results: SEGS LS-2 solar collector (1994).13

Published
2019-08-30
How to Cite
jamalabadi, mya, Ghareghani, P., Alikhani, S., & Khatami , I. (2019). Thermal and exergy analysis of the use of the lens in parabolic trough. To Physics Journal, 3, 134-166. Retrieved from http://purkh.com/index.php/tophy/article/view/472
Section
Research Articles