A New Model for Describing Heavy-Light Mesons in The Extended Nonrelativistic Quark Model Under a New Modified Potential Containing Cornell, Gaussian And Inverse Square Terms in The Symmetries Of NCQM

  • Abdelmadjid Maireche Laboratory of physical and chemical materials, physics department, sciences faculty, university of M’sila, Algeria
Keywords: Schrödinger equation, Heavy-Light Mesons, the quark-antiquark potential containing Cornell, Gaussian and inverse square terms,, Bopp’s shift method, noncommutative space phase and the Weyl Moyal star product

Abstract

In present work, the modified Schrödinger equation (MSE) is analytically solved for the Heavy-Light Mesons (HLM) under modified quark-antiquark potential containing modified Cornell, Gaussian and inverse square terms MCGISTs, in the symmetries of 3-dimensional noncommutative real space phase (NC: 3D-RSP), using the generalized Bopp’s shift method. The energy a spectrum of HLM has been investigated in the framework of extended nonrelativistic quark model ENRQM. Furthermore, the new energy eigenvalues and the corresponding Hamiltonian operator are calculated in (NC: 3D-RSP) symmetries. The masses of the scalar, vector, pseudoscalar, and pseudovector for (,,  and ) mesons have been calculated in (NC: 3D-RSP) and we have shown that the spin-orbital coupling  generated automatically. Moreover, using the perturbation approach, we found that the perturbative solutions of discrete spectrum can be expressed by the parabolic cylinder functions function, Gamma function, the discreet atomic quantum numbers  of the  state and (the spin independent and spin dependent) parameters (), in addition to noncommutativity parameters (and). As a special case this model has been applied to study the S- and P-wave states of,,  and mesons  in NCQM symmetries The total complete degeneracy of new energy levels of HLM was changed to become equals the new value instead  in ordinary quantum mechanics. Our obtained results are in good agreement with the already existing literatures in NCQM. 

Downloads

Download data is not yet available.

Author Biography

Abdelmadjid Maireche, Laboratory of physical and chemical materials, physics department, sciences faculty, university of M’sila, Algeria

Laboratory of physical and chemical materials, physics department, sciences faculty, university of Mila, Algeria

References

S. Roy, N. S. Bordoloi and D. K. Choudhury, Canadian Journal of Physics, 91(1), 34–42 (2013).doi:10.1139/cjp-2012-0165

P. González, A. Valcarce, H. Garcilazo and J. Vijande, Physical Review D 68(3) 034007 (2003) .doi:10.1103/physrevd.68.034007

Yazarloo H. Mehraban, Eur. Phys. J. Plus (2017) 132: 80. doi:10.1140/epjp/i2017-11335-x

H. Hassanabadi · S. Rahmani · S. Zarrinkamar, Few-Body Systems 57(4), 241–247. doi:10.1007/s00601-015-1038-0

R. Kumar and F. Chand, Communications in Theoretical Physics, 59(5), 528–532 (2013). doi:10.1088/0253-6102/59/5/02

M. Moazami H. Hassanabadi and S. Zarrinkamar, Few-Body Syst 59:100. (2018). https://doi.org/10.1007/s00601-018-1422-7

W. Heisenberg. Letter to R. Peierls (1930), in ’Wolfgang Pauli, Scientific Correspondence’, Vol. III, p.15, Ed. K. von Meyenn - 1985. Springer. : Verlag).

H. Snyder, Physical Review 71(1), 38–41 (1947). doi:10.1103/physrev.71.38

P.-M. Ho and H.-C. Kao, Physical Review Letters, 88(15), 151602-1 (2002). doi:10.1103/physrevlett.88.151602

M. Darroodi, H. Mehraban, and H. Hassanabadi, Modern Physics Letters A 33, No. 35, 1850203 (2018). doi:10.1142/s0217732318502036

K. P. Gnatenko, Physical Review D 99(2), 026009-1 (2019). doi:10.1103/physrevd.99.026009

K. P. Gnatenko and V. M. Tkachuk, Physics Letters A 381(31), 2463–2469 (2017). doi:10.1016/j.physleta.2017.05.056

O. BERTOLAMI, J. G. ROSA, C. M. L.DE ARAGÃO, P. CASTORINA and D. ZAPPALÀ. Modern Physics Letters A 21(10), 795–802 (2006). doi:10.1142/s0217732306019840

Abdelmadjid Maireche, J. Nano- Electron. Phys. 9(3), 03021 (2017). DOI 10.21272/jnep.9(3).03021

A. E. F. Djemaï and H. Smail, Commun. Theor. Phys. (Beijing, China) 41(6), 837–844 (2004). doi:10.1088/0253-6102/41/6/837

Yi Y., Kang L., Jian-Hua W. and Chi-Yi C. Chinese Physics C 34(5), 543–547 (2010). doi:10.1088/1674-1137/34/5/005

O. Bertolami and P. Leal, Physics Letters B 750, 6–11 (2015). doi:10.1016/j.physletb.2015.08.024

C. Bastos, O. Bertolami, N. C. Dias and J. N. Prata, Journal of Mathematical Physics. 49(7), 072101 (2008) .doi:10.1063/1.2944996

J. Zhang , Physics Letters B 584(1-2), 204–209 (2004) .doi:10.1016/j.physletb.2004.01.049

J. Gamboa, M. Loewe and J. C. Rojas, Phys. Rev. D 64, 067901 (2001). DOI : https://doi.org/10.1103/PhysRevD.64.067901.

M. Chaichian, Sheikh-Jabbari and A. Tureanu, Physical Review Letters. 86(13), 2716–2719 (2001). doi:10.1103/physrevlett.86.2716.

Abdelmadjid Maireche, J. Nano- Electron. Phys. 11 No 1, 01024-1 - 01024-10 (2019).

DOI : https://doi.org/10.21272/jnep.11(1).01024

Abdelmadjid Maireche, J. Nano- Electron. Phys. 8(1), 01020-1 - 01020-7 (2016). DOI : 10.21272/jnep.8(1).01020

Abdelmadjid Maireche, J Nanomed Res. 4(4), 00097 (2016). DOI : 10.15406/jnmr.2016.04.00097.

Abdelmadjid Maireche, Med. J. Model. Simul. 04, 060-072 (2015).

Abdelmadjid Maireche, J Nanomed Res. 4(3), 00090 (2016). DOI: 10.15406/jnmr.2016.04.00090.

Abdelmadjid Maireche, NanoWorld J. 1(4), 122-129 (2016). doi: 10.17756/nwj.2016-016

Abdelmadjid Maireche, J. Nano- Electron. Phys. 7 (4), 04021-1- 04021-7 (2015).

Abdelmadjid Maireche, Afr. Rev Phys. 11, 111-117 (2016).

Abdelmadjid Maireche, International Frontier Science Letters. 9, 33-46 (2016). DOI : https://doi.org/10.18052/www.scipress.com/IFSL.9.33

Abdelmadjid Maireche, Lat. Am. J. Phys. Educ. 9(1), 1301 (2015).

Abdelmadjid Maireche, International Letters of Chemistry, Physics and Astronomy 73, 31-45 (2017). DOI:https://doi.org/10.18052/www.scipress.com/ILCPA.73.31

Abdelmadjid Maireche, J. Nano- Electron. Phys. Volume 8(2), 02027-1 - 02027-10 (2016). DOI: 10.21272/jnep.8(2).02027

Abdelmadjid Maireche, J. Nano- Electron. Phys. 8(2), 02046-1 - 02046-6 (2016). DOI: 10.21272/jnep.8(2).02046.

Abdelmadjid Maireche, J. Nano- Electron. Phys. 10 No 6, 06015-1 - 06015-7 (2018). DOI: https://doi.org/10.21272/jnep.10(6).06015

S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, (7th. ed.; Elsevier, 2007).

Published
2019-08-30
How to Cite
Maireche, A. (2019). A New Model for Describing Heavy-Light Mesons in The Extended Nonrelativistic Quark Model Under a New Modified Potential Containing Cornell, Gaussian And Inverse Square Terms in The Symmetries Of NCQM. To Physics Journal, 3, 197-215. Retrieved from http://purkh.com/index.php/tophy/article/view/500
Section
Research Articles