Characterization of Nanocrystallite CdAl2SO3 Thin Films Produced by Inexpensive Chemical Bath Techniques for Photonic Device Applications: The Influence of Annealing Temperature

  • James Ezihe Federal University of Technology, Owerri, Nigeria.
  • D. D. O. Eya
  • C. Iroegbu
  • O. K. Echendu
  • K. O. Egbo
Keywords: Thin Films, Bandgap Energy, Absorbance, CdAl2SO3


Quaternary nanocrystallite (CdAl2SO3) thin films have been synthesized by the method of chemical bath deposition (CBD) technique using a reaction bath containing cadmium chloride, thiourea, and Aluminium sulphate octadecahydrate at room temperature. The thin films are white in colour and strongly adherent to the substrate. The materials were annealed at various temperatures of 150 °C, 200 °C and 250 °C before characterizing. The XRD results showed that the CdAl2SO3 thin films crystallize as binary-phase compounds of CdSO3 and Al2O3. The material has good absorbance at room temperature compared to annealed temperature. Annealing has little or no effect on the transmittance of the film material. The absorption coefficient increases with annealing temperature. The reflectance decreases with annealing temperature. The direct bandgap of the CdAl2SO3 thin films ranges from 3.70eV to 3.9eV. The thickness of the films ranges from 207 nm to 879 nm. The SEM micrographs reveal homogenous and densely packed grains with unequal sizes and shapes. The high absorption in the UV-Vis regions makes the material suitable for thin films absorber solar cells. The direct bandgap of the thin films makes them applicable in optical devices such as LEDs and semiconductor lasers


Download data is not yet available.

Author Biographies

D. D. O. Eya

Department of Physics, Federal University of Technology, PMB 1526, Owerri, Nigeria

C. Iroegbu

Department of Physics, Federal University of Technology, PMB 1526, Owerri, Nigeria.

O. K. Echendu

Department of Physics, Qwa Qwa Campus, University of the Free State, X13, Phuthaditjhaba 9866, South Africa.

K. O. Egbo

Department of Physics, City University of Hong Kong, 83 Tat Chee Ave.Kowloon, Hong Kong


U. Ubale, S. G. Ibrahim, Structural, electrical and optical properties of nanostructural FeCdS3 thin films deposited by chemical spray technique: effect of complex. International Journal of Material and Chemistry, 2(2) (2012): 57-64. DOI: 10.5923/j.ijmc.20120202.03

Aviram, M. A. Ratner, Molecular rectifier, Chem. Physics. Lett. Vol.29 (1974) pp. 277-283.

U. Ubale, K. S. Chipade, M. V. Bhute, P. P. Raut, G. P. Malpe, Y. S. Sakhare, M. R. Belkhedkar, Structural, optical and electrical properties of nanostructured CdS:CuS composite thin films grown by CBD method, International Journal of Materials and Chemistry. 2(4) (2012): 165-172. DOI: 10.5923/j.ijmc.20120204.09

L. O. Onyegbule, Chemical bath deposition and characterisation of SnS and SnS-CuxS MSc. Thesis, Federal University of Technology Owerri. (2015)

H. Heujun, H. Guan, L. Lei, Sythesis of Cu2FeSnS4 thin films with Stannite and Wurtzite structure directly on glass substrate via the solvothermal method, Journal of Materials Science Materials Electronics. 28(11) (2007). doi: 10.1007/s 10854-017-6469-6

M. Xie, Z. Daming, Z. Ming, Z.Zhuang, O. Liangqi, L. Xiaolong, S. Song,. Preparation and characterization of Cu2ZnSnS4 thin films and solar cells fabrication from quaternary Cu-Zn-Sn-S target. International Journal of Photoenergy, Article ID 929454, (2013) 9 pages.

M. Lei, L.Yongfeng, Y. Bin, D. Zhan-Hui, Y. Gang, L. Rui-Jian, D. Rui, L. Lei, Mechanism of effect of intrinsic defects on electrical and optical properties of Cu2CdSnS4: an experimental and first-principles study, Journal of Physics, Volume 48, (2015) Number 44

M. Xiaohui, C. Ruizhi, C. Wenjuan, Synthasis and characterization of Cu2FeSnS4 thin films prepared by electrochemical deposition, Materials Letters, (2017)193. doi. 10.1016/j.matlet.2017.01.099

Majumdar, H. Z. Xu, F. Zhao, L. Jayasingha, S. Khosravani, X. Lu, V. Kelkar, Z. Shi, Mat. Res. Soc. Symp. Proc. 770 (2003)

Dhere. Ramesh, Tim. Gessert, Jie. Zhou, Sally. Asher, Joel. Pankow and Helio. Moutinho, Mat. Res. Soc. Symp. Proc. 763 (2003) 1

K. Shwarsctein, T. F. Jaramillo, Sung-Hyeon. Baeck, M. Sushdhikh and E. W. McFarland, J. Electrochem. Soc. 153(7) (2006) 483

F. C. Eze and C. E. Okeke, Materials Chemistry and Physics, 47 (1997) 31

M. Theye, Thin film technology and applications in optical properties of thin films. K.L Chopra and L. K. Malhota (eds). ( Tata McGraw-Hill, New Delhi, 1985) p. 163

R. Rodrigo del, D. Basaure, R. Schrebler, H. Gomez and R. Cordova, Phys. Chem. B106(49) (2002) 12634

Yano. Mitsuaki, Ken-Ichi Ogata, Fengping. Yan, Kazuto. Koike, Shigehiko. Sasa and Masataka. Inoue, Mat. Res. Soc. Symp. Proc. 744 (2003) 1 [16] E. Pentia, V. Draghici, G. Sarau, B. Mereu, L. Pintillie, F. Sava and M. Popeseu, J. Electrochem. Soc. 151(1) (2004) 729

O. K. Echendu, Thin film solar cells all-electrodeposited ZnS, CdS and CdTe materials, PhD. Thesis, Sheffield Hallam University, United Kingdom (2014).

O. K. Echendu, A. R. Weerasinghe, D. G. Disco, F. Fausi, I. M. Dharmadas, Characterisation of n-type and p-type ZnS thin layers grown by electrochemical method, J. Elect. Mater: 42(11) (2013) 692-700.

O. K. Echendu, S. Z.Werta, F. B. Dejene, Effect of Cadmium precursor on the Physico-chemical properties of electrochemically grown CdS thin films for optoelectroniccs devices application: a comparative study, Journal of Material Science: Materials in Electronics. (2019) 30: 365-377.

D. D. O. Eya, F.C. Eze, O. K. Echendu, U. S. Mbamara, Synthesis and optical properties of chemically deposited cadmium sulphide thin films, Nigerial Journal of Solar Energy, Vol. 27(2016).

Mahrov, G. Boschloo, A. Hyfeldt, H. Siegbahn, H. Rensmo, Photoelectron spectroscopy studies of Ru(dcbpyH2)2(NCS)2/CuI and Ru(dcbpyH2)2/CuSCN interfaces for solar cell applications, Journal of Physical Chemistry B. 108 (31) (2004) 11604-11610.

J. R. Bakke, J. T. Tangkanen, C. Hagglund, T. A. Pakkanen, S. F. Ben, Growth characteristics, material properties and optical properties of zinc oxysulphide films deposited by atomic layer deposition, J. Vac. Sci. Technol. A: Vac Surf Films. 30(2012) 01A135-1 - 01A135-8.

Q. Cheng, D. Wang, H. Zhon, Electrodeposition of Zn(OS) (Zinc oxysulfide) thin films: exploiting its thermodynamic and kinetic processes with incorporation of tartaric acid, J . Energy Chem. (2017) press)

R. Henriquez, M. Froment, G. Riveros, E. A. Dalchiele, H. Gomez, P. Grez, D. Lincot, Electrodeposition of polyphasic films of zinc oxysulfide from DMSO onto n-Inp(100) and n-Inp(111) single crystals in the presence of zinc salt, thiourea and dissolved molecular oxygen, J . Phys. Chem. C111(2007) (6017-6023)

Polat, S. Aksu, M. A. Itunbas, , S. Yilmaz, , E. Bacaksiz, The influence of diffusion temperature on the structural, optical and magnetic properties of manganese-doped zinc oxysulfide thin films, J. Solid State Chem. 184(2011) (2683-2689)

R. S. Quimby, Photonics and lasers: An Introduction (Hoboken, NJ: Wiley). P.259, 2006.

How to Cite
Ezihe, J., Eya, D. D. O., Iroegbu, C., Echendu, O. K., & Egbo, K. O. (2019). Characterization of Nanocrystallite CdAl2SO3 Thin Films Produced by Inexpensive Chemical Bath Techniques for Photonic Device Applications: The Influence of Annealing Temperature. To Physics Journal, 3, 224-242. Retrieved from
Research Articles