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Description
Fractional Boundary Value Problems (FBVPs) have gained significant attention in recent years due to their ability to 
model complex phenomena in various scientific and engineering fields. These problems involve differential equations 
of non integer order, known as fractional differential equations (FDEs), which offer a more flexible and accurate 
representation of memory and hereditary properties in materials and processes. A crucial aspect of studying FBVPs 
is establishing the existence and uniqueness of their solutions, which ensures that the problem is well posed and the 
solution is meaningful and interpretable. The concept of a well posed problem, as introduced by Hadamard, entails 
three main criteria: existence, uniqueness, and continuous dependence on initial or boundary data. For fractional 
boundary value problems, these criteria are essential to validate the applicability and reliability of the models. The 
analysis typically begins with the formulation of the fractional differential equation and the associated boundary 
conditions. The order of the derivative in the equation, denoted by a fractional number (\alpha \) (0<\(\alpha\)<1), 
brings additional challenges compared to integer order differential equations. Existence and uniqueness of solutions 
for FBVPs are often investigated using fixed point theorems, such as Banach’s fixed point theorem, Schauder’s fixed 
point theorem, and the Leray Schauder degree theory. These theorems provide powerful tools for demonstrating the 
existence of solutions under appropriate conditions. For instance, consider a fractional differential equation of the 
form \( D^\alpha u(x)=f(x, u(x))\), where \( D^\alpha\) denotes the Caputo fractional derivative, and \( f\) is a 
given function. The boundary conditions could be specified as \( u(0)=u_0\) and \( u(1)=u_1\). To apply Banach’s 
fixed point theorem, one typically transforms the fractional differential equation into an equivalent integral equation. 
This transformation often involves the use of the Green’s function or fractional integral operators. The problem then 
reduces to finding a fixed point of a suitably defined operator in a Banach space. The contraction mapping principle 
ensures the existence and uniqueness of the fixed point, provided that the operator satisfies the contraction condition. 
Specifically, if there exists a constant \( L<1 \) such that \( \|T(u_1)   T(u_2)\|\leq L \|u_1   u_2\| \) for all \( u_1, 
u_2 \) in the Banach space, where \( T \) is the operator, then a unique fixed point exists, which corresponds to the 
unique solution of the FBVP. Schauder’s fixed point theorem and the Leray Schauder degree theory are particularly 
useful when dealing with non-linear problems where the contraction mapping principle may not apply. Schauder’s 
theorem requires the operator to be continuous and compact, mapping a convex, closed, and bounded subset of a 
banach space into itself. The application of this theorem often involves verifying these conditions, which can be non 
trivial for fractional differential equations. The Leray Schauder degree theory, on the other hand, extends these ideas 
to broader classes of problems and provides topological methods to establish the existence of solutions. Beyond fixed 
point theorems, other methods, such as upper and lower solutions and the monotone iterative technique, can be 
employed to prove the existence and uniqueness of solutions for FBVPs. These methods are particularly useful for 
dealing with non linear and non convex problems. The method of upper and lower solutions involves constructing 
two functions that bound the solution from above and below, respectively, and iteratively refining these bounds to 
converge to the unique solution. The continuous dependence on boundary data, the third criterion for well posedness, 
ensures that small changes in the boundary conditions lead to small changes in the solution. This property is crucial 
for the stability and physical relevance of the model. It is typically established by deriving a priori estimates for the 
solution and demonstrating that the solution operator is continuous with respect to the boundary data. In summary, 
the existence and uniqueness of solutions for well posed fractional boundary value problems are fundamental aspects 
that ensure the reliability and applicability of these models in various fields.
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