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Abstract 

The effect of pair ions on the formation and propagation characteristics of Ion-Acoustic (IA) shock waves in a 

six-component cometary plasma composed of two hot and one colder electron component, hot ions, and 

heavier pair ions is studied. The colder and one hotter component of electrons together with the lighter 

hydrogen ions are modelled by kappa distributions. The other hotter electron component is described by a q-

nonextensive distribution. The KdVB equation is derived for the system and its solution plotted for different 

kappa values, oxygen ion densities, kinematic viscosities as well as the temperature ratios of ions. In the aforesaid 

plasma, the shock wave exhibits a transition towards a  solitary structure. It is found that the strength of shock 

profile decreases with an increase in both temperatures of the positively charged oxygen ions and negatively 

charged oxygen ion densities. However, the strength of the shock wave decreases with a decrease of positively 

charged oxygen ion densities. 
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Introduction  

Nonlinearity is one of the most beautiful and astonishing manifestations of nature. At large amplitudes, a plasma 

wave becomes nonlinear. A number of investigations are on-going on nonlinear waves such as shocks, solitons, 

double-layers, etc. which are observed in space, astrophysical and laboratory plasmas. 

The nonlinearity of the ion acoustic (IA) wave has been extensively studied in recent times.  The first theoretical 

investigation on the nonlinear IA wave was by Sagdeev [1]; its experimental observation was confirmed by Ikezi 

et al. [2].   

Every nonlinear phenomena in a plasma is governed by some nonlinear equations.  A soliton in which 

nonlinearity is balanced by dispersion is mainly described by the Korteweg-deVries (KdV) equation. A medium 

having both dispersion and dissipative effect supports a shock wave instead of a soliton and is described by the 

Korteweg-deVries-Burgers (KdVB) equation. Dissipative mechanisms such as wave-particle interactions, 

turbulence, dust charge fluctuations in a dusty plasma, multi-ion streaming, Landau damping, anomalous 

viscosity, etc. introduce the dissipative Burger term in the nonlinear KdVB equation [3-5]. When wave breaking 

due to nonlinearity is balanced by the combined effect of dispersion and dissipation, a monotonic or oscillatory 

dispersive shock wave is generated in a plasma [6]. For a negligible dissipative effect, the solitary wave 

transforms to a shock wave. The IA shock waves have been extensively studied by many authors recently [7-11]. 

Most astrophysical plasmas deviate from the well known Maxwellian distribution because of the presence of 

higher energetic particles. So it is appropriate to describe these plasmas with a non-Maxwellian distribution 

such as the kappa distribution [12]. Also the extensive formalism fails whenever a physical system includes long-

range forces or long-range memory [13]. A nonextensive entropy, which is a generalization of the B-G-S entropy, 
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was first proposed by Constantino Tsallis [14]. He extended the standard additive nature of entropy to the 

nonlinear, nonextensive case by introducing a parameter ‘q’.  This Entropy notion can also be used for goodness 

of fit for a Maxwellian distribution. See [15-19] for more information on this topic. 

Liyan and Jiulin first studied ion acoustic waves in a plasma with the power-law q-distribution in nonextensive 

statistics [20]. They proposed that Tsallis statistics is suitable for systems being in the nonequilibrium stationary-

state with inhomogeneous temperature and containing a plentiful supply of superthermal particles. 

A theoretical investigation of the one dimensional dynamics of nonlinear electrostatic dust ion-acoustic (DIA) 

waves in an unmagnetized dusty plasma consisting of an ion fluid, non-thermal electrons and fluctuating 

immobile dust particles has been made by Alinejad [21]. He showed that the special patterns of nonlinear 

electrostatic waves are significantly modified by the presence of the non-thermal electron component. The 

transition from DIA solitary to shock waves was also studied, which is related to the contributions of the 

dispersive and dissipative terms. 

Pakzad [22] investigated propagating nonlinear waves in unmagnetized and strongly coupled dusty plasma 

containing nonthermal ions, Boltzmann distributed electrons and variable dust charge. He found that as long as 

the dispersive term and the dissipative term as well as the nonlinear term are balanced, a shock wave (both 

monotonic and oscillatory types) structure forms; otherwise a soliton forms due to the balance between the 

dispersive and the nonlinear term. In another study, Pakzad again studied the IA shock waves in a plasma 

consisting of superthermal electrons, Boltzmann distributed positrons and ions by deriving the KdVB equation 

[23]. It was reported that an increasing positron concentration decreased the amplitude of the waves.  

IA solitons have been studied in plasmas where both electrons and ions have been described by q – nonextensive 

distributions. Thus, when electrons were described by the Tsallis distribution, it was found that smaller the value 

of q (q is a measure of the deviation of the distribution from the Maxwell-Boltzmann distribution), the greater 

the width of the soliton [24].  

Attention then shifted to dust acoustic (DA) waves in plasmas where both electrons and ions were described by 

q - nonextensive distributions [25, 26]. Here too it was found that the soliton width decreased and its amplitude 

increased when the electron nonextensive parameter q→1; the ion nonextensivity made the solitons more 

spiky. Recently it was shown that in a four component dusty plasma containing non-extensive electrons and two 

temperature ions both positive and negative polarity solutions existed [27].  

A cometary plasma is composed of hydrogen ions, and new born heavier ions and electrons with relative 

densities depending on their distances from the nucleus. Initially, positively charged oxygen ions were treated 

as the main heavier ion [28, 29].  However, the discovery of negatively charged oxygen ions [30] enables one to 

consider the plasma environment around a comet as a pair-ion plasma (O+, O-) with other ions (both lighter and 

heavier) constituting the other components of the plasma. For instance, the electron distribution in the tail of 

comet Giacobini-Zinner was observed to have three components: a cold component, a mid component and a 

hot component - the mid component was interpreted as having a sizeable contribution from the photo-

electrons generated by the ionisation of cometary neutrals [31]. 

We thus model our cometary plasma system, as a six-component plasma consisting of three electron 

components (two hot and one cold), hydrogen ions, and pair ions [32]. Both kappa and nonextensive electron 

distributions are used because of their importance in space plasmas and the observation of nonlinear events at 

Halley’s comet [33]. 

We find that in a six-component cometary plasma with aforesaid components, the nonlinear wave shows a 

transition from a shock to a soliton. A reduction in the shock wave amplitude is seen with increasing spectral 

indices and negatively charged oxygen ion densities. The strength of the shock profile also decreases with 

increasing temperatures of the positively charged oxygen ions and viscosity of negatively charged oxygen ions. 
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Basic Equations 

We consider the existence of Ion-Acoustic shock waves in a six component plasma consisting of negatively and 

positively charged oxygen ions (represented, respectively, by subscripts ‘1’ and ‘2’) , kappa described hydrogen 

ions, hot electrons of solar origin and colder electrons of cometary origin. The second hot electron of cometary 

origin is described by a q-nonextensive distribution. At equilibrium, charge neutrality requires that 

 

   (1) 

In the above equation 0cen
, 0hen

represent the equilibrium densities of colder and hotter cometary electrons 

respectively whereas 0sen
  represents the equilibrium density of hotter solar electrons. Also 10n

, 20n
, 0Hn

 
are 

respectively, the equilibrium densities of negatively charged oxygen (O-) ions, positively charged oxygen (O+) 

ions and hydrogen ions. Z1 and Z2 denote the charge numbers of O- and O+ ions respectively. 

The dynamics of the heavier ions can be described by the following hydrodynamic equations: 

      (2) 

 

           (3) 

 

where ‘-’ sign refers to positively 

charged oxygen ions (and vice versa) and 
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jm , respectively, denote the fluid velocity and mass of the j-

species of ions (j=O-, O+). In (3) the adiabatic equation of state for ions, is 
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is the ion kinematic viscosity. Here we are 

considering a one dimensional system and hence γ = 3. 

The Poisson’s equation is given by 
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1  
and 2 now represent the normalized kinematic viscosities of the pair ions. 

The normalised kappa distribution of solar electrons, colder cometary electrons and hydrogen ions are given by, 
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One of the hot electron components is modelled using q non-extensive distribution and is given by  
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Derivation of KdVB Equation 

We use the reductive perturbation method to derive the KdVB equation from (5) to (11) by introducing the 

transformations [34] 
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where  ε  is a smallness parameter and λ is the wave phase speed. 

To apply the reductive perturbation technique the various parameters are expanded as 
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Equating the coefficients of  
5/2  in (5), we get 
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Substituting the values from (15) and (16) into (18) to (21) and eliminating the second order terms, we obtain 

the KdVB equation as 
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The above results in (22) and (23) are comparable with the results of Pakzad [23] for a plasma consisting of 

superthermal electrons, positrons and ions. Equation (22) is the well known KdVB equation describing the 

nonlinear propagation of the ion acoustic shock waves in a plasma with superthermal electrons. In this equation 

B is the dispersive term and the Burger term C arises due to the effect of heavy ions kinematic viscosity. In the 

absence of the viscosity term, (22)  reduces to the usual KdV equation for the propagation of ion acoustic solitary 

waves where nonlinearity is balanced by dispersive effects. On the other hand, if the coupling becomes very 

strong the shock waves will appear. The nature of these shock structures depends on the relative values between 

the dispersive and dissipative coefficients B and C, respectively. 

Solution of KdVB Equation 

In order to find the solution of (22) we use the transformed coordinate ( )V  = − of the comoving frame 

with speed V and use the boundary conditions: 
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for a localized 

solution [35]. 

When the partial differential equation of a system is formed by the combined effect of dispersion and 

dissipation, a convenient method to solve it is “the tanh method” [36, 37]. Using the above transformation (22) 

can be written as, 
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Again using the transformation tanh =  and assuming a series solution of the form
1

0

( )
n

i

i

i

a  
=

= , we 

arrive at the solution of (24), as 

2
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The speed of comoving frame is related to the coefficients A, B and C as 

2 2 2(100 60 )

25

B k C kBC
V

AB

− +
=  and 

10

C
k

B


= which can be obtained using the boundary conditions. 

Results  

Solution (25) is applicable to any astrophysical plasma. But, in this paper, we concentrate on parameters relevant 

to comet Halley: the observed value of the density of hydrogen ions was
-3

4.95cmHn = ; their temperature was 

4
8 10HT K=  . The temperature of the solar (or hot) electrons was 5

2 10 KTse =    [38]. The temperature of the 

second component of the photo-electron was set at 
4

2 10 KTce =   . Negatively charged oxygen ions with an 

energy ~ 1eV and densities ≤ 1 cm-3  was identified by  Chaizy et al. [30]. We thus set the densities of positively 

charged oxygen ions at 
-3

0.5 cm20n =  and that of negatively charged oxygen ions at 
-3

0.05cm10n =  [38, 3]. 

 
 

Fig. 1 

Shock profile variation as a function of 

temperature of O+ ions 

Fig. 2 

Shock profile variation as a function of density of 

O- ions 

 

Figure 1 is a plot of the solution (25) of KdVB equation (24), and shows the variation of the temperature of 

positively charged oxygen ions; the parameters for the figure are 
-3

0.05cm10n = , 
-3

0.5 cm20n = , 
-3

4.95cmHn = , 

4
2 10 KTce =  , 

5
2 10 KTse =  , 

4
9 10 KT

he
=  , 

4
1.16 101T K=  , 11Z = , 2 2Z = , 3se ce H  = = = , 10 0.1 = , 

20 0.75 = , 0.2 = , q = 0.2. Curve (a) is for 2

4
1.9 1.16 10T K=   , curve (b) is for 2

4
2 1.16 10T K=    and curve 

(c) is for 2

4
2.1 1.16 10T K=   . It is clear from the figure that the strength of shock profile decreases with an 

increase in the temperature of the positively charged O+ ions and as the temperature increases the shock wave 

nature gradually transforms to soliton. 
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Figure 2 depicts the variation of the potential 
1 versus  as a function of density of negatively charged oxygen 

ion; for this figure we fix 2

4
2 1.16 10T K=   . All other parameters are the same as in figure 1. Curve (a) is for 

-3
0.03cm10n = , curve (b)  is for 

-3
0.04 cm10n = , curve (c) is 

-3
0.05cm10n = . We find that the strength of the shock 

wave decreases with an increase of the negatively charged oxygen ion density. As the density of negatively 

charged oxygen ions increase,the shock wave completely transforms to soliton. 

 

 
 

Fig. 3 

Shock profile variation as a function of density of 

O+ ions  

Fig. 4 

Shock profile variation as a function of kappa 

indices 

Figure 3 again is a plot of the solution (25), and shows the variation of the potential 
1 versus  as a function of 

density of positively charged oxygen ions; the parameters for the figure are again the  same as in figure 1. Curve 

(a) is for 
-3

0.3cm20n = , curve (b) is for 
-3

0.4 cm20n = , curve (c) is for 
-3

0.5 cm20n = . We find that the strength of 

the shock wave decreases with a decrease of the positively charged oxygen ion density. At lower O+ ion density, 

shock wave transforms to soliton. In terms of electron densities, Figures 2 and 3 allows one to conclude that as 

the electron densities decrease the shock wave transforms to a solitary wave.  

Figure 4 represents the shock profile as a function of kappa indices; the parameters for the figure are the same 

as in figure 1. Curve (a) is for the spectral index 2se ce H  = = = , curve (b) is for 3se ce H  = = =  and curve 

(c) is for 4se ce H  = = = . It is clear from the figure that the amplitude of the shock wave increases with the 

decrease of kappa indices. i.e., the superthermality of se, ce, and H+ enhances the strength of the shock wave. 

 
 

Fig. 5 Fig. 6 
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Shock profile variation as a function of kinematic 

viscosity of O- ions  

Shock profile variation as a function of kinematic 

viscosity of O+ ions 

Figure 5 is again a plot of the solution (25), and shows the variation of the potential
1 versus  as a function of 

kinematic viscosity of negatively charged oxygen ions; the parameters for the figure are the same as in figure 1. 

Curve (a) is for
10 0.1 = , curve (b) is for 

10 0.2 =  and curve (c) for 
10 0.3 = . We find that the strength of the 

shock wave decreases with an increase of the kinematic viscosity of negatively charged oxygen ion and we can 

see that there is a gradual change in nature from a shock to a soliton. 

Figure 6 indicates the variation of the potential 
1
 
versus 

 
as a function of kinematic viscosity of positively 

charged oxygen ion. Curve (a) is for 
20 0.5 = , curve (b) is for 20 0.75 =  and curve (c) for 

20 1 = . We find 

that the strength of the shock wave increases with an increase of the kinematic viscosity of positively charged 

oxygen ions. 

 

Fig. 7 

Shock profile variation as a function of 

temperature of cold electrons 

Figure 7 depicts the variation of the potential 
1 versus  as a function of temperature of cold electrons; the 

parameters chosen are the same as in figure 1. Curve (a) is for 
4

3.5 10 KTce =  , curve (b) is for 
4

4 10 KTce =   

and curve (c) for 
4

4.5 10 KTce =  . As the temperature of the cold electron component increases, there is a rapid 

transition from solitary structure to shock. 

Conclusions 

We have investigated the shock wave profiles in a six component plasma consisting of solar and cometary 

components by deriving the KdVB equation. The solar component consists of lighter hydrogen ions and a hot 

(superthermal) electron component. The cometary contribution consists of a pair of heavier ion components, 

colder superthermal electrons, and hot nonextensive electrons. The influence of spectral indices kappa, 

temperature of positively charged oxygen ions and density of oxygen ions (O+, O-) on the shock wave profile 

has been studied. We find that in a six component cometary plasma with aforesaid components, the nonlinear 

wave shows a transition from a shock to a soliton. A reduction in the shock wave amplitude is seen with 

increasing spectral indices and negatively charged oxygen ion densities. The strength of the shock profile also 

decreases with increasing temperatures of the positively charged oxygen ions and viscosity of negatively 

charged oxygen ions. However, it increases with an increase of the kinematic viscosity of positively charged 

oxygen ions. Heavy ions were surmised to effect nonlinear waves and nonlinear solitary waves have been 

observed in the environment of comet Halley. Our results show that the amplitude of the solitary waves seems 
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to be well correlated to the presence of water molecules in a cometary plasma and the associated photo-

ionisation processes. 

Interestingly the two components of electrons observed at comet 67P/ Churyumov-Gerasimenko were recently 

modelled by kappa distributions [39]. Also ions such as H+, H-, O-, and O+ were identified in the coma of 67P/ 

Churyumov-Gerasimenko. Hence our plasma model is applicable to the environment around the coma of the 

comet 67P/ Churyumov-Gerasimenko. 

The six component model used very well describes the plasma environment around a comet and such analytic 

studies serve to emphasise the role of each component in the generation of nonlinear events.  However, future 

explorations should endeavour to simultaneously measure both particle distributions as well as nonlinear events 

so that experimental observations and analytic and modelling studies complement one another. 
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