

Some results on Generalized Sasakian space forms

Gurupadavva Ingalahalli¹ and C.S.Bagewadi²

¹Department of Mathematics, J.N.N.C.E.,
Navule, Shimoga - 577 204, Karnataka, INDIA.

²Department of Mathematics, Kuvempu University,
Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA.

e-mail:gurupadavva@gmail.com ;prof_bagewadi@yahoo.co.in

Abstract: In this paper we study the $W_3 \cdot R = 0$, $\tilde{C} \cdot W_3 = 0$, $P \cdot W_3 = 0$, $W_3 \cdot Q = 0$, $Q \cdot W_3 = 0$, where \tilde{C} is the Concircular curvature tensor, P is the projective curvature tensor, W_3 curvature tensor in generalized Sasakian space forms.

AMS Subject Classification (2000): 53C15, 53C25, 53D15.

Key Words: Generalized Sasakian space form, Concircular and projective curvature tensor, Ricci tensor, Ricci operator, scalar curvature.

1. Introduction

In 2004, P. Alegre, D. E. Blair and A. Carriazo [1] introduced the concept of generalized Sasakian space forms. The generalized Sasakian space form is defined as follows:

A generalized Sasakian space form in a Sasakian manifold (M, ϕ, ξ, η, g) whose Riemannian curvature tensor is given by

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X$$

$$+ 2g(X,\phi Y)\phi Z\} + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi$$

$$- g(Y,Z)\eta(X)\xi\},$$

where f_1 , f_2 , f_3 are differentiable functions on M and X, Y, Z are vector fields on M. In such a case, we shall write generalized Sasakian space form as $M(f_1, f_2, f_3)$. This type of manifold appears as a natural generalization of the well known Sasakian space form M(c), which can be obtained as a particular case of generalized Sasakian space form by taking $f_1 = \frac{c+3}{4}$, $f_2 = \frac{c-1}{4}$ and $f_3 = \frac{c-1}{4}$, where c denotes constant ϕ -sectional curvature.

The generalized Sasakian space forms have been extensively studied by many authors like [2, 3, 4, 6, 10, 11, 12, 14, 15, 18]. Based on the above work in this paper we study the $W_3(\xi, X) \cdot R = 0$, $\tilde{C} \cdot W_3 = 0$, $P \cdot W_3 = 0$, $W_3 \cdot Q = 0$, $Q \cdot W_3 = 0$, where \tilde{C} is the Concircular curvature tensor, P is the projective curvature tensor, W_3 curvature tensor in generalized Sasakian space forms.

1

2. Preliminaries

An *n*-dimensional Riemannian manifold M is called an almost contact metric manifold if there exist a (1,1) tensor field ϕ , a vector field ξ and a 1-form η such that

(2.1)
$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi \cdot \xi = 0, \quad \eta(\phi X) = 0,$$

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X),$$

$$(2.3) g(\phi X, Y) = -g(X, \phi Y).$$

For an *n*-dimensional generalized Sasakian space form, we have

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi\}$$

$$(2.4) - g(Y,Z)\eta(X)\xi\},$$

$$(2.5) S(X,Y) = [(n-1)f_1 + 3f_2 - f_3]g(X,Y) + [-3f_2 - (n-2)f_3]\eta(X)\eta(Y),$$

$$(2.6) r = (n-1)\{nf_1 + 3nf_2 - 2f_3\}.$$

For an *n*-dimensional almost contact metric manifold the Concircular curvature tensor \tilde{C} , Projective curvature tensor P and W_3 curvature tensor is given by:

(2.7)
$$\tilde{C}(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)}[g(Y,Z)X - g(X,Z)Y],$$

(2.8)
$$P(X,Y)Z = R(X,Y)Z - \frac{1}{(n-1)}[S(Y,Z)X - S(X,Z)Y],$$

(2.9)
$$W_3(X,Y)Z = R(X,Y)Z + \frac{1}{(n-1)}[g(Y,Z)QX - S(X,Z)Y],$$

where R is the curvature tensor, Q is the Ricci operator and S is the Ricci tensor i.e., g(QX,Y) = S(X,Y). From (2.4) for a generalized Sasakian space forms, we have

$$\eta(R(X,Y)Z) = (f_1 - f_3)\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\},\$$

$$(2.11) R(X,Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\},$$

$$(2.12) R(\xi, X)Y = (f_1 - f_3)\{g(X, Y)\xi - \eta(Y)X\},$$

From (2.5), we get

$$(2.13) S(X,\xi) = (n-1)(f_1 - f_3)\eta(X).$$

3. Generalized Sasakian space form satisfying $W_3(\xi, X) \cdot R = 0$

This section deals with the study of generalized Sasakian-space form satisfying $W_3(\xi, X) \cdot R = 0$, where W_3 is a curvature tensor. In [17], Pokhariyal introduced the notion of a new curvature tensor, denoted by W_3 and studied its relativistic significance.

Let $M(f_1, f_2, f_3)$ be an *n*-dimensional generalized Sasakian-space form satisfying $W_3(\xi, X) \cdot R = 0$. Then, we have

$$W_3(\xi, X)R(U, V)W - R(W_3(\xi, X)U, V)W$$

$$-R(U, W_3(\xi, X)V)W - R(U, V)W_3(\xi, X)W = 0.$$

Putting $W = \xi$ in (3.1) and by virtue of (2.11), we obtain

$$(f_1 - f_3)\eta(W_3(\xi, X)U)V - (f_1 - f_3)\eta(W_3(\xi, X)V)U$$

$$(3.2) \qquad -2(f_1 - f_3)\eta(X)R(U, V)\xi + 2(f_1 - f_3)R(U, V)X = 0.$$

By virtue of (2.9) in (3.2), we get

$$(3.3) (f_1 - f_3)^2 [g(X, U)V + S(X, U)V - g(X, V)U - S(X, V)U] + 2(f_1 - f_3)R(U, V)X = 0.$$

Taking inner product with ξ in (3.2), then we have

$$(3.4) (f_1 - f_3)^2 [g(X, U)\eta(V) + S(X, U)\eta(V) - g(X, V)\eta(U) - S(X, V)\eta(U)] + 2(f_1 - f_3)g(R(U, V)X, \xi) = 0.$$

Putting $U = \xi$ in (3.4) and by virtue of (2.12), (2.13), we get

$$S(X,V) = g(X,V) + [(n-1)(f_1 - f_3) - 1]\eta(X)\eta(V).$$

On Contracting (3.6), we obtain

$$(3.6) r = (n-1)[1 + (f_1 - f_3)].$$

Hence, we state the following:

Theorem 3.1. An n-dimensional generalized Sasakian space form M satisfying the condition $W_3(\xi, X) \cdot R = 0$ is an η -Einstein manifold with scalar curvature $r = (n-1)[1 + (f_1 - f_3)]$.

4. Generalized Sasakian space form satisfying $\tilde{C} \cdot W_3 = 0$

This section deals with the study of generalized Sasakian-space form satisfying $\tilde{C} \cdot W_3 = 0$, where \tilde{C} is a Concircular curvature tensor. A transformation of an n-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation . The interesting invariant of a concircular transformation is the concircular curvature tensor \tilde{C} , which is defined by [19].

Let $M(f_1, f_2, f_3)$ be an *n*-dimensional generalized Sasakian-space form satisfying $\tilde{C} \cdot W_3 = 0$. Then, we have

$$\tilde{C}(X,Y)W_3(Z,U)V - W_3(\tilde{C}(X,Y)Z,U)V$$

$$-W_3(Z,\tilde{C}(X,Y)U)V - W_3(Z,U)\tilde{C}(X,Y)V = 0.$$

Putting $X = \xi$ in (4.1) and by virtue of (2.11), we obtain

$$\tilde{C}(\xi,Y)W_3(Z,U)V - W_3(\tilde{C}(\xi,Y)Z,U)V$$

$$-W_3(Z,\tilde{C}(\xi,Y)U)V - W_3(Z,U)\tilde{C}(\xi,Y)V = 0.$$

By virtue of (2.7) in (4.2), we get

$$\left[(f_1 - f_3) - \frac{r}{n(n-1)} \right] \left[g(Y, W_3(Z, U)V)\xi - \eta(W_3(Z, U)V)Y - g(Y, Z)W_3(\xi, U)V + \eta(Z)W_3(Y, U)V - g(Y, U)W_3(Z, \xi)V + \eta(U)W_3(Z, Y)V \right]$$
(IV.1) We (Z. V.) The control of th

(4.3)
$$-g(Y,V)W_3(Z,U)\xi + \eta(V)W_3(Z,U)Y] = 0.$$

Taking inner product with ξ in (4.2), we get

$$\left[(f_1 - f_3) - \frac{r}{n(n-1)} \right] \left[g(Y, W_3(Z, U)V) - \eta(W_3(Z, U)V) \eta(Y) - g(Y, Z) \eta(W_3(\xi, U)V) + \eta(Z) \eta(W_3(Y, U)V) - g(Y, U) \eta(W_3(Z, \xi)V) + \eta(U) \eta(W_3(Z, Y)V) \right]$$

$$(4.4) -g(Y,V)\eta(W_3(Z,U)\xi) + \eta(V)\eta(W_3(Z,U)Y)] = 0.$$

Putting $U = \xi$ in (4.4) and by virtue of (2.9), (2.12), (2.13) and on simplification, we obtain

(4.5)
$$\left[(f_1 - f_3) - \frac{r}{n(n-1)} \right] \left[(f_1 - f_3)g(Y, V)\eta(Z) - \frac{1}{(n-1)}S(Y, V)\eta(Z) \right].$$

From (4.6), either $[(f_1 - f_3) - \frac{r}{n(n-1)}] = 0$ or

(4.6)
$$S(Y,V)\eta(Z) = (n-1)(f_1 - f_3)g(Y,V)\eta(Z).$$

Putting $Z = \xi$ in (4.6), we have

$$(4.7) S(Y,V) = (n-1)(f_1 - f_3)g(Y,V).$$

On contracting (5.6), we obtain

$$(4.8) r = n(n-1)(f_1 - f_3).$$

Hence, we state the following:

Theorem 4.2. An n-dimensional generalized Sasakian space form M satisfying the condition $\tilde{C} \cdot W_3 = 0$ is an Einstein manifold with scalar curvature $r = n(n-1)(f_1 - f_3)$.

5. Generalized Sasakian space form satisfying $P \cdot W_3 = 0$

Let $M(f_1, f_2, f_3)$ be an *n*-dimensional generalized Sasakian-space form satisfying $P \cdot W_3 = 0$. Then, we have

(5.1)
$$P(X,Y)W_3(Z,U)V - W_3(P(X,Y)Z,U)V - W_3(Z,P(X,Y)U)V - W_3(Z,U)P(X,Y)V = 0.$$

Putting $X = \xi$ in (5.1), we obtain

(5.2)
$$P(\xi, Y)W_3(Z, U)V - W_3(P(\xi, Y)Z, U)V - W_3(Z, P(\xi, Y)U)V - W_3(Z, U)P(\xi, Y)V = 0.$$

By virtue of (2.8) in (5.2), we get

$$(f_1 - f_3)[g(Y, W_3(Z, U)V)\xi - g(Y, Z)W_3(\xi, U)V - g(Y, U)W_3(Z, \xi)V - g(Y, V)W_3(Z, U)\xi]$$

$$+ \frac{1}{(n-1)}[-S(Y, W_3(Z, U)V)\xi + S(Y, Z)W_3(\xi, U)V + S(Y, U)W_3(Z, \xi)V + S(Y, V)W_3(Z, U)\xi] = 0.$$

Taking inner product with ξ in (5.2), we get

$$(f_1 - f_3)[g(Y, W_3(Z, U)V) - g(Y, Z)\eta(W_3(\xi, U)V) - g(Y, U)\eta(W_3(Z, \xi)V) - g(Y, V)\eta(W_3(Z, U)\xi)] + \frac{1}{(n-1)}[-S(Y, W_3(Z, U)V) + S(Y, Z)\eta(W_3(\xi, U)V) + S(Y, U)\eta(W_3(Z, \xi)V)]$$

$$(5.4) +S(Y,V)\eta(W_3(Z,U)\xi)] = 0.$$

Putting $U = \xi$ in (5.4) and by virtue of (2.9), (2.12), (2.13) and on simplification, we obtain

(5.5)
$$S(Y, QZ)\eta(V) = (n-1)^2 (f_1 - f_3)^2 g(Y, Z)\eta(V).$$

Putting $V = \xi$ in (5.5), we have

(5.6)
$$S^{2}(Y,Z) = (n-1)^{2}(f_{1} - f_{3})^{2}g(Y,Z).$$

Hence, we state the following:

Theorem 5.3. An n-dimensional generalized Sasakian space form M satisfying the condition $P \cdot W_3 = 0$, then the square of the Ricci tensor S^2 is equal to the $(n-1)^2(f_1 - f_3)^2$ times of the metric tensor g.

6. Generalized Sasakian space form satisfying $W_3 \cdot Q = 0$

Let $M(f_1, f_2, f_3)$ be an n-dimensional generalized Sasakian-space form satisfying $W_3 \cdot Q = 0$. Then, we have

(6.1)
$$W_3(X,Y)QZ - Q(W_3(X,Y)Z) = 0.$$

Putting $Y = \xi$ in (6.1), we obtain

(6.2)
$$W_3(X,\xi)QZ - Q(W_3(X,\xi)Z) = 0.$$

By virtue of (2.9) in (6.2), we get

$$(n-1)(f_1 - f_3)^2 \eta(Z)X - \frac{1}{(n-1)}S(X, QZ)\xi$$

$$+(n-1)(f_1 - f_3)^2 g(Z, X)\xi - \frac{1}{(n-1)}\eta(Z)Q^2X = 0.$$

Taking inner product with ξ in (6.3) and on simplification, we have

(6.4)
$$(n-1)(f_1 - f_3)^2 g(X, Z) - \frac{1}{(n-1)} S(X, QZ) = 0.$$

On simplifying (6.4), we obtain

(6.5)
$$S(X, QZ) = (n-1)^2 (f_1 - f_3)^2 g(X, Z).$$

which implies,

(6.6)
$$S^{2}(X,Z) = (n-1)^{2}(f_{1} - f_{3})^{2}g(X,Z).$$

Hence, we state the following:

Theorem 6.4. An n-dimensional generalized Sasakian space form $M(f_1, f_2, f_3)$ satisfying the condition $W_3 \cdot Q = 0$, then the square of the Ricci tensor S^2 is equal to the $(n-1)^2(f_1 - f_3)^2$ of the metric tensor g.

7. Generalized Sasakian space form satisfying $Q \cdot W_3 = 0$

Let $M(f_1, f_2, f_3)$ be an n-dimensional generalized Sasakian-space form satisfying $Q \cdot W_3 = 0$. Then, we have

$$Q(W_3(X,Y)Z) - W_3(QX,Y)Z - W_3(X,QY)Z - W_3(X,Y)QZ = 0.$$

Putting $Y = \xi$ in (7.1), we obtain

$$Q(W_3(X,\xi)Z) - W_3(QX,\xi)Z - W_3(X,Q\xi)Z - W_3(X,\xi)QZ = 0.$$

By virtue of (2.9) in (7.2), we get

$$(7.3) \frac{2}{(n-1)}S(QX,Z)\xi + 2(f_1 - f_3)S(Z,X)\xi - 2(f_1 - f_3)\eta(Z)QX - 2(f_1 - f_3)^2\eta(Z)X = 0.$$

Taking inner product with ξ in (7.3) and on simplification, we have

$$S(QX,Z) = -(n-1)(f_1 - f_3)S(Z,X) + 2(n-1)^2(f_1 - f_3)^2\eta(Z)\eta(X).$$

which implies,

$$(7.5) S^{2}(X,Z) = -(n-1)(f_{1} - f_{3})S(Z,X) + 2(n-1)^{2}(f_{1} - f_{3})^{2}\eta(Z)\eta(X).$$

Hence, we state the following:

Theorem 7.5. An n-dimensional generalized Sasakian space form $M(f_1, f_2, f_3)$ satisfying the condition $Q \cdot W_3 = 0$, then the square of the Ricci tensor S^2 is equal to the linear combination of the $(n-1)(f_1 - f_3)$ times of the Ricci tensor S and $2(n-1)^2(f_1 - f_3)^2$ times of $\eta \otimes \eta$.

REFERENCES

- [1] P. Alegre, D.E. Blair and A. Carriazo, Generalized Sasakian-space-form, Israel J.Math., 141, (2004), 157-183.
- [2] P. Alegre and A. Carriazo, Structures on Generalized Sasakian-space-form, Diff. Geo. and its Application., 26 (6), (2008), 656-666.
- [3] Alfonso Carriazo, D.E. Blair and Pablo Alegre, On generalized Sasakian-space-form, Proceedings of the Ninth International Workshop on Diff. Geom., 9, (2005), 31-39.
- [4] Alfonso Carriazo, Veronica Martin-Molina and Mukut Mani Tripathi, Generalized (k, μ) -space forms, arXiv:0812.2605v1 [math.DG] 14 Dec 2008.
- [5] Alfonso Carriazo and Veronica Martin-Molina , Generalized (k, μ)-space forms and D_a-homothethic deformations, Balkan Journal of Geometry and its Applications, 16 (1), (2011), 37-47.
- [6] C.S. Bagewadi and Gurupadavva Ingalahalli, A Study on Curvature tensors of a Generalized Sasakian space form, Acta Universitatis Apulensis, 38, (2014), 81-93.
- [7] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics, Springer-Verlag, Berlin, 509, (1976).
- [8] U.C. De and A.A. Shaikh, Sasakian manifolds with C-Bochner curvature tensor, Indian J. of Math., 41 (2), (1999), 131-137.
- [9] U.K. Kim, Conformally flat Generalized Sasakian-space-forms and locally symmetric Generalized Sasakian-space-form, Note di Matematica, 26 (1), (2006), 55-67.

- [10] S.K. Hui and D. Chakraborty, Generalized Sasakian-space-forms and Ricci almost solitons with a conformal killing vector field, New Trends in Math. Sciences, 4, (2016), 263-269.
- [11] S.K. Hui and D.G. Prakasha, On the C-Bochner curvature tensor of generalized Sasakian-space-forms, Proc. Natl. Acad. Sci., India. Sect. A phys. Sci. 85 (3), (2015), 401-405.
- [12] S.K. Hui, R.S. Lemence and D. Chakraborty, Ricci solitons on Ricci Pserdosymmetric $(LCS)_n$ -Manifolds, arXiv:1707.03618v1 [math.DG] 12 Jul 2017.
- [13] Mohamed Belkhelfa, Ryszard Deszcz and Leopold Verstraelen, Symmetry Properties of Sasakian-space-form, Soochow Journal of Mathematics, 31 (4), (2005), 19-36.
- [14] Pablo Alegre and Alfonso Carriiazo, Generalized Sasakian-space-forms and Conformal Changes of the Metric, Differential Geometry and its Applications, 26, (2008), 656-666.
- [15] Pradip Majhi and Gopal Ghosh, On a Classification of Para-Sasakian Manifolds, Facta Universitatis Ser. Math. Inform. 32 (5), (2017), 781-788.
- [16] D.G. Prakasha, On Generalized Sasakian-space-forms with Weyl-Conformal Curvature tensor, Lobachevskii Journal of Mathematics, 33 (3), (2012), 223-228.
- [17] G.P. Pokhariyal, Curvature tensors and their relativistic significance III, Yokohama Math. J., 21, (1973), 115-119.
- [18] Uday Chand De and Abdul Haseeb, On generalized Sasakian-space-forms with M-projective curvature tensor, Adv. Pure Appl. Math. 9 (1), (2018), 67-73.
- [19] K. Yano, Concircular geometry I & IV, Proc. Imp. Acad. Tokyo., 16 (1940), 195-200, 354-360.