The Norms Over Anti Fuzzy G-submodules

  • rasul rasuli associate professor of payame noor university(PNU), Tehran, Iran.
Keywords: Theory of modules, Groups, Homomorphism, Fuzzy set theory, Norms, Direct sums, Anti


In this study, we define anti fuzzy-submodules with respect to investigate some of their algebraic properties. Later we introduce the union and direct sum of them and finally, we prove that the union, direct sum, homomorphic images and pre images of them are also anti fuzzy


Download data is not yet available.


[1] M. T. Abu Osman, On some products of fuzzy subgroups, Fuzzy Sets and Systems, 24 (1987), 79-86.
[2] C. Alsina, E. Trillas and L. Valverde, On some logical connectives for fuzzy set theory, J. Math. Anal.
Appi., 93(1983), 15-26.
[3] I. Beg, Fuzzy multivalued functions, Bull. Allahabad Math. Soc., 21(2006), 41-104.
[4] I. Beg and S. Ashraf, Fuzzy similarity and measure of similarity with Lukasiewicz implicator, New Math.
Natural Computation, 4(2008), 191-206.
[5] I. Beg and S. Ashraf, Fuzzy inclusion and fuzzy similarity with Godel implication operator, New Math.
Natural Computation, 5(2009), 617-633.
[6] I. Beg and S. Ashraf, Fuzzy dissimilarity measures and distance functions, Fuzzy Information and Engineering, 1(2009), 205-217.
[7] I. Beg and S. Ashraf, Similarity measures for fuzzy sets, Appl. and Comput. Math., 8(2009), 192-202.
[8] V. V. Cross and T.A. Sudkamp, Similarity and Compatibility in Fuzzy Set Theory, Springer-Verlag, Heidelberg 2002.
[9] C. W. Curtles and I. Reiner, Representation Theory of finite group and Associative algebra, INC, 1962.
[10] J. Dombi, A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness induced
by fuzzy operators, Fuzzy Setsand Systems, 8(1982), 149-163.
[11] D. Dubois and H. Prade, Fundamentals of Fuzzy Sets, Kluwer Academic Publishers, Dordrecht 2000.
[12] S. Gottwald, Fuzzy Sets and Fuzzy Logic, Vieweg, Wiesbaden, 1993.
[13] U. Hohle, Probabilistie uniformization of fuzzy topologies, Fuzzy Sets and System, 1(1978), 311-332.
[14] U. Hohle and S.E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The
Hand book of Fuzzy Mathematics Series, 1998.
[15] A. J. Kamble and T. Venkatesh, A note on some fuzzy algebraic structures, Inter. J. Fuzzy Math. Sys. ,
4(2014), 219-226.
[16] A. Kaufmann and M. M. Gupta, Fuzzy Mathematics Models in Engineering and management Science,
North-Holland, Amsterdam, 1988.
[17] E. E. Kerre, Introduction to the Basic Principles of Fuzzy Set Theory and some of its Applications, Communication and Cognition, 1991.
[18] H. X. Li and V. C. Yen, Fuzzy Sets and Fuzzy Decision-Making, CRC Press. Inc., London, 1995.
[19] J. Lukasiewicz, A numerical interpretation of the theory of propositions, Ruch Filozoficzny, 23(1922),
[20] D. S. Malik, J. N. Mordeson and M. K. Sen, Fundamentals of Abstract Algebra, McGraw Hill, (1997).
[21] D. S. Malik and J. N. Mordeson, Fuzzy Commutative Algebra, World Science publishing Co.Pte.Ltd.,(1995).
[22] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28(1942), 535-537.
[23] H.T . Nguyen and E. A. Walker, Fuzzy Logic, (Third Edition) CRC Press, Boston, 2006.
[24] K. Peeva and Y. Kyosev, Fuzzy Relational Calculus, World Scientific, New Jersey 2004.
[25] R. Rasuli, Fuzzy Ideals of Subtraction Semigroups with Respect to A t-norm and A t-conorm, The Journal
of Fuzzy Mathematics Los Angeles, 24 (4) (2016), 881-892.
[26] R. Rasuli, Fuzzy modules over a t-norm, Int. J. Open Problems Compt. Math., 9 (3) (2016), 12-18.
[27] R. Rasuli, Fuzzy Subrings over a t-norm , The Journal of Fuzzy Mathematics Los Angeles, 24 (4) (2016),
[28] R. Rasuli, Norms over intuitionistic fuzzy subrings and ideals of a ring, Notes on Intuitionistic Fuzzy Sets,
22 (5) (2016), 72-83.
[29] R. Rasuli, Norms over fuzzy Lie algebra, Journal of New Theory, 15(2017), 32-38.
[30] R. Rasuli, Fuzzy subgroups on direct product of groups over a t-norm, Journal of Fuzzy Set Valued Analysis,
3(2017), 96-101.
[31] R. Rasuli, Characterizations of intuitionistic fuzzy subsemirings of semirings and their homomorphisms by
norms, Journal of New Theory, 18(2017), 39-52.
[32] R. Rasuli, Intuitionistic fuzzy subrings and ideals of a ring under norms, LAP LAMBERT Academic
publishing, 2017, ISBN: 978-620-2-06926-7.
[33] R. Rasuli, Characterization of Q-Fuzzy subrings (Anti Q-Fuzzy Subrings) with respect to a T-norm (TConorms), Journal of Information and Optimization Science, 31(2018), 1-11.
[34] R. Rasuli, T -Fuzzy Submodules of R × M, Journal of New Theory, 22(2018), 92-102.
[35] R. Rasuli, Fuzzy subgroups over a T -norm, Journal of Information and Optimization Science, 39(2018),
[36] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517.
[37] B. Russell, Vagueness, Australian J. Phil., 1(1923), 84-92.
[38] B. Schweizer and A. Sklar, Probabilistic Metric Space, North-Holland, Amsterdam, 1983.
[39] P. K. Sharma, Anti fuzzy submodule of a module, Advances in Fuzzy Sets and Systems, 12 (2012), 49-57.
[40] S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and tconorms, Fuzzy Setsand Systems, 11(1983), 115-134.
[41] R. R. Yager, On a general class of fuzzy connectives, Fuzzy Setsand Systems, 4(1980), 235-242.
[42] L. A. Zadeh, Fuzzy sets, Inform. Control., 8(1965), 338-353.
[43] L. A. Zadeh, Generalized theory of uncertainty (GTU)principal concepts and ideas, Comput. Statist. Data
Anal., 51(2006), 15-46.
[44] H. J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston, 1991.
How to Cite
rasuli, rasul. (2019). The Norms Over Anti Fuzzy G-submodules. MathLAB Journal, 2(1), 56-62. Retrieved from
Research Articles