Wilf's Formula and a Generalization of the Choi-Lee-Srivastava Identities

  • Ulrich Abel Technische Hochschule Mittelhessen
Keywords: Euler-Mascheroni constant, infinite product formulas, hyperbolic functions


The identities of Choi, Lee, and Srivastava imply a formula proposed by Wilf. We show that these identities are immediate consequences of the well-known product formulas for the sine function and the cosine function. Moreover, we prove a generalization.


Download data is not yet available.


[1] M. Abramowitz, A. Stegun, Handbook of Mathematical Functions, Appl. Math. Ser. 55, National Bureau of Standards, Washington D. C., 1972.
[2] Chao-Ping Chen, Junesang Choi, Two infinite product formulas with two parameters, Integral Transforms and Special Functions 24 (2013), 357-363.
[3] Chao-Ping Chen and Richard B. Paris, Generalizations of two infinite product formulas, Integral Transforms Spec. Funct. 25 (2014), 547-551.
[4] Chao-Ping Chen and Richard B. Paris, On the asymptotics of products related to generalizations of the Wilf and Mortini problems, Integral Transforms Spec. Funct. 27 (2015), 281-288.
[5] Junesang Choi, Tae Young Seo, Evaluation of some infinite series, Indian J. Pure Appl. Math. 28 (1997) 791-796.
[6] Junesang Choi, Jungseob Lee, H. M. Srivastava, A generalization of Wilf's formula, Kodai Math. J. 26 (2003), 44-48.
[7] C. Hernández-Aguilar, J. López-Bonilla, R. López-Vázquez, Identities of Choi-Lee-Srivastava involving the Euler-Mascheroni's constant, MathLAB Journal 1 (2018) 296-298.
[8] J. López-Bonilla, R. López-Vázquez, On an identity of Wilf for the Euler-Mascheroni's constant, Prespacetime Journal 9 (2018), 516-518.
[9] Herbert S. Wilf, Problem 10588, Amer. Math. Monthly 104 (1997) 456.
How to Cite
Abel, U. (2019). Wilf’s Formula and a Generalization of the Choi-Lee-Srivastava Identities. MathLAB Journal, 2(1), 158-160. Retrieved from https://purkh.com/index.php/mathlab/article/view/343
Research Articles