Shapes of the Transmuted Kumaraswamy Pareto Distribution for Varying Parameter Values

Authors

  • Francis Eze Azikiwe University
  • Urama, K. U Michael Okpara University of Agriculture
  • S. I. Omyeagu Nnamdi-Azikiwe University,

Keywords:

R-program, Transmutation, Kumaraswamy Distribution, Pareto Distribution

Abstract

In this study, a new generalization of the Pareto distribution is undertaken, by first generalizing the Pareto distribution using the Kumaraswamy method and thereafter transmuting the resulting Kumaraswamy Pareto distribution. A detailed account of the general mathematical properties of the new generalized distribution is presented. The shapes of the Transmuted Kumaraswamy Pareto Density were plotted using R-program. The results show the superiority of the Transmuted Kumaraswamy Pareto distribution over the one parameter Pareto distribution.

Downloads

Download data is not yet available.

Author Biographies

Francis Eze, Azikiwe University

Department of Statistics Nnamdi-, Awka Nigeria

Urama, K. U, Michael Okpara University of Agriculture

 

Department of Statistics, Umudike, Abia State

S. I. Omyeagu, Nnamdi-Azikiwe University,

Professor Department of Statistics, Awka, Anambra State, Nigeria

 

References

Afify A.Z., Nofal Z.M., Yousef H.M., El Gebaly Y.M. and Butt N.S. (2015b). The transmuted Weibull-Lomax distribution: properties and Application. Pakistan Journal of Statistics and Operation Research, XI, 135 – 152.

Alshawarbeh E., Lee C. and Famoye F. (2012).Beta Cauchy distribution.Journal of Probability and Statistical Science, 10, 41 – 57.

Aryal G.R. (2013). Transmuted log-logistics distribution,Journal of Statistics Applications & Probability, 2, 11 – 20.

Aryal G.R. and Tsokos C.P. (2009).On the transmuted extreme value distribution with application,Nonlinear Analysis,71, 1401 - 1407.

Ashour S.K. and Eltehiwy M.A. (2013a).Transmuted Lomax distribution,AmericanJournal of Applied Mathematics and Statistics,1, 121 – 127.

Ashour S.K. and Eltehiwy M.A. (2013b). Transmuted exponentiated Lomax distribution, Australian Journal of Basic and Applied Sciences, 7, 658 – 667.

Ashour S.K. and Eltehiwy M.A. (2013c). Transmuted Exponentiated modified Weibull distribution,International Journal of Basic and Applied Sciences, 2, 258 – 269.

Barreto-Souza W., Santos A.H.S. and Cordeiro G.M.(2010). The Beta generalized exponential distribution, Journal of Statistical Computation and Simulation, 80, 159 - 172.

Bourguignon M., Ghosh I. and Cordeiro G.M. (2016).General results for the transmuted family of distributions and new models.Journal of Probability and Statistics.http://dx.doi.org/10.1155/2016/7208425

Condino F.and Domma F. (2010). The beta Dagum distribution. Presented at the 45th Scientific Meeting of the Italian Statistical Society, University of Padua, June 15 – June 18.

Cordeiro G.M. and Castro De M. (2011). A new family of generalized distributions.Journal of Statistical Computation and Simulation, 81, 883-893.

Cordeiro G.M., Nobre J.S., Pescim R.R. and Edwin M.M.(2012). The beta Moyal: A useful skew distribution,International Journal of Research and Revises in Applied Sciences, 10, 171 – 192.

Eugene N., Lee C.and Famoye F.(2002).Beta-normal distribution and its applications, Communications in Statistics - Theory & Methods, 31, 497-512.

Famoye F., Lee C. and Olumolade O.(2005).The beta-Weibull distribution, Journal of Statistical Theory and Applications, 4, 121-136.

Khan M. S., King R. and Hudson I.L.(2016).Transmuted Kumaraswamy distribution. Statistics In Transition – new series, 17, 183 – 210.

Kong L., Lee C. and Sepanski J.H. (2007).On the properties of beta-gamma distribution, Journal of Modern Applied Statistical Methods, 6, 187 - 211.

Kumaraswamy P. (1980). A generalized probability density functions for double-bounded random processes.Journal of Hydrology, 46, 79-88.

Mahmoud M.R. and Mandouh R.M. (2013).On the transmuted Frechet distribution,Journal of Applied Sciences Research, 9, 5553 – 5561.

Marshall A.W. and Olkin I. (1997).A new method for adding a parameter to a family of distributions with application to the Exponential and Weibull families. Biometrika,84,641-652.

Merovci F. (2013).Transmuted Rayleigh distribution,Austrian Journal of Statistics,42, 21 – 31.

MirMostafaee S.M.T.K., Mahdizadeh M. and Nadarajah S. (2015). The beta Lindley distribution, Journal of Data Science,13, 603 - 626.

Mudholkar, G.S and Srivastava,D.K. (1993). Exponentiated Weibull family for analyzing bathtub failure rate,IEEE Transact. Reliability, 42 (2), 299-302.

Nadarajah S. and Kotz S.(2004).The beta-Gumbel distribution, Mathematical Problems in Engineering, 4, 323-332.

Nadarajah S. and Gupta A.K.(2004).The beta-Frechet distribution, Far East Journal of Theoretical Statistics, 14, 15 – 24.

Nadarajah S. and Kotz S.(2006).The beta exponential distribution, Reliability Engineering and System Safety, 91, 689-697.

Pescim R.R., Demetrio C.B.G., Cordeiro G.M., OrtegaE.M.M. and Urbano M.R. (2010).The beta generalized half-normal distribution. Computational Statistics and Data Analysis, 54, 945 – 957.

Shaw W.T. and Buckley I.R. (2007).The alchemy of probability distributions: Beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map. http://library.wolfram.com/infocenter/Articles/6670/alchemy.pdf

Tahir M.H. and Nadarajah S.(2015). Parameter Induction in Continouos Univariate distributions.Well- established G-Families.Anais da Academia Brasileira de Cie ̂ncias 87(2);539-568.(Annals of the Brazilian Academy of Sciences). http://dx.doi.org/10.1590/0001-376520140299www.scielo.br/aabc

Published

2020-04-30

How to Cite

Francis Eze, Kenny Urama, & Sidney Onyeagu. (2020). Shapes of the Transmuted Kumaraswamy Pareto Distribution for Varying Parameter Values. MathLAB Journal, 5, 102-109. Retrieved from https://purkh.com/index.php/mathlab/article/view/692

Issue

Section

Research Articles

Most read articles by the same author(s)