A Generalized Summation Formula


  • Salahuddin Department of Mathematics, PDM University, Bahadurgarh 124507, Haryana, India
  • Vinti Department of Mathematics, PDM University, Bahadurgarh 124507, Haryana, India


Summation formulae, Contiguous relation


In this paper, we have developed the generalized expression of mceclip0.png

and it’s corresponding integral form.


Download data is not yet available.


Abramowitz, Milton., A and Stegun, Irene; Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, 1970.

Aomoto, Kazuhiko, Kita, Michitake; Theory of Hypergeometric functions, Springer Tokyo Dordrecht Heidelberg London New York, 2011.

Gauss, C. F.; Disquisitiones generales circa seriem infinitam ... , Comm. soc. reg. sci. Gott. rec., 2(1813), 123-162.

Koepf, W.; Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.

Luke, Y. L.; Mathematical functions and their approximations. Academic Press Inc., London„ 1975.

P. Appell, Sur une formule de M. Tisserand et sur les fonctions hypergéométriques de deux variables, J. Math. Pures Appl., (3) 10 (1884) 407-428.

Prudnikov, A.P., Brychkov, Yu. A. and Marichev, O.I.; Integral and Series Vol 3: More Special Functions, Nauka, Moscow,2003.

Salahuddin, Khola, R. K.; New hypergeometric summation formulae arising from the summation formulae of Prudnikov, South Asian Journal of Mathematics,4(2014),192-196.

Steffensen, J. F.; Interpolation (2nd ed.), Dover Publications, U.S.A,2006. 64




How to Cite

Salahuddin, & Vinti. (2020). A Generalized Summation Formula. MathLAB Journal, 6, 62-64. Retrieved from https://purkh.com/index.php/mathlab/article/view/805



Research Articles