A Study On Generalized (r,s,t)-Numbers
Keywords:
Tribonacci numbers, Lucas (r,s,t) number, Selected:(r,s,t) numbersAbstract
In this paper, we investigate the generalized (r; s; t) sequence and we deal with, in detail, three special cases which we call them (r; s; t), Lucas (r; s; t), and modified (r; s; t) sequences. We present Binet’s formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related to these sequences.
Downloads
References
Bruce, I., A modified Tribonacci sequence, Fibonacci Quarterly, 22(3), 244–246, 1984.
Catalani, M., Identities for Tribonacci-related sequences, arXiv: math/0209179, 2012.
Choi, E., Modular Tribonacci Numbers by Matrix Method, Journal of the Korean Society of Mathematical Education Series B: Pure and Applied. Mathematics. 20(3), 207–221, 2013.
Elia, M., Derived Sequences, The Tribonacci Recurrence and Cubic Forms, Fibonacci Quarterly, 39 (2), 107-115, 2001.
Er, M. C., Sums of Fibonacci Numbers by Matrix Methods, Fibonacci Quarterly, 22(3), 204-207, 1984.
A.F. Horadam, A Generalized Fibonacci Sequence, American Mathematical Monthly, 68 (1961), 455-459.
A.F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quarterly 3.3 (1965),
-176.
A.F. Horadam, Special Properties of The Sequence wn(a; b; p; q(a; b; p; q), Fibonacci Quarterly, 5(5) (1967), 424-434.
A.F. Horadam, Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J 32 (1965), 437-446.
Howard, F.T., Saidak, F., Zhou’s Theory of Constructing Identities, Congress Numer. 200, 225-237, 2010.
Kalman, D., Generalized Fibonacci Numbers By Matrix Methods, Fibonacci Quarterly, 20(1), 73-76, 1982.
Lin, P. Y., De Moivre-Type Identities For The Tribonacci Numbers, Fibonacci Quarterly, 26, 131-134, 1988.
Pethe, S., Some Identities for Tribonacci sequences, Fibonacci Quarterly, 26(2), 144–151, 1988.
Scott, A., Delaney, T., Hoggatt Jr., V., The Tribonacci sequence, Fibonacci Quarterly, 15(3), 193–200, 1977.
Sloane, N.J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
Shannon, A., Tribonacci numbers and Pascal’s pyramid, Fibonacci Quarterly, 15(3), pp. 268 and 275, 1977.
Soykan, Y., Simson Identity of Generalized m-step Fibonacci Numbers, Int. J. Adv. Appl. Math. and Mech. 7(2), 45-56, 2019.
Soykan, Y. Tribonacci, and Tribonacci-Lucas Sedenions. Mathematics 7(1), 74, 2019.
Soykan, Y., On Four Special Cases of Generalized Tribonacci Sequence: Tribonacci-Perrin, modified Tribonacci, modified Tribonacci-Lucas, and adjusted Tribonacci-Lucas Sequences, Journal of Progressive Research in Mathematics, 16(3), 3056-3084, 2020.
Soykan, Y., On Generalized Third-Order Pell Numbers, Asian Journal of Advanced Research and Reports, 6(1): 1-18, 2019.
Soykan Y., On Generalized Padovan Numbers, MathLAB Journal, In Print.
Soykan, Y., Generalized Pell-Padovan Numbers, Asian Journal of Advanced Research and Reports, 11(2), 8-28, 2020. DOI: 10.9734/AJARR/2020/v11i230259
Soykan, Y., A Study on Generalized Jacobsthal-Padovan Numbers, Earthline Journal of Mathematical Sciences, 4(2), 227-251, 2020. https://doi.org/10.34198/ejms.4220.227251
Soykan Y., On Generalized Narayana Numbers, Int. J. Adv. Appl. Math. and Mech. 7(3), 43-56, 2020, (ISSN: 2347-2529).
Polatlı, E.E., Soykan, Y., On Generalized Third-Order Jacobsthal Numbers, Submitted.
Soykan, Y., On Generalized Graham Numbers, Journal of Advances in Mathematics and Computer Science, 35(2), 42-57, 2020. DOI: 10.9734/JAMCS/2020/v35i230248.
Soykan Y., On Generalized Reverse 3-primes Numbers, Journal of Scientific Research and Reports, 26(6), 1-20, 2020. DOI: 10.9734/JSRR/2020/v26i630267
Spickerman, W., Binet’s formula for the Fibonacci sequence, Fibonacci Quarterly, 20, 118–120, 1982.
Stanley, R. P., Generating Functions, Studies in Combinatorics, MAA Studies in Mathematics, Math. Assoc. of America, Washington, D.C., 17, 100-141, 1978.
Yalavigi, C. C., Properties of Fibonacci numbers, Fibonacci Quarterly, 10(3), 231–246, 1972.
Yilmaz, N., Taskara, N., Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Applied Mathematical Sciences, 8(39), 1947-1955, 2014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Yüksel Soykan

This work is licensed under a Creative Commons Attribution 4.0 International License.