Fixed Point Theorems on Intuitionistic Fuzzy Bipolar Metric Spaces
Keywords:
Bipolar Metric Spaces, Complete, Intuitionistic Fuzzy Metric Space, Fixed PointAbstract
In this paper, we introduce the notion of intuitionistic fuzzy bipolar metric space, which can deal with the separation between purposes of two distinct sets. We characterize some fundamental definitions and expand the Banach contraction theorem for this new generalization. We give some non-trivial examples to support our result in intuitionistic fuzzy bipolar metric spaces.
Downloads
References
Atanassov. K, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986), 87 – 96.
Ayush Bartwal, Dimri. R. C, Gopi Prasad, Some fixed point theorems in fuzzy bipolar metric spaces J. Nonlinear Sci. Appl., 13 (2020), 196 – 204.
Grabiec. M, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385 – 389.
George. A, P. Veeramani. P, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395 – 399.
Gregori. V, Sapena. A, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245 – 252.
Gupta. V, Mani. N, Saini. A, Fixed point theorems and its applications in fuzzy metric spaces, Conference Paper (2013), 11 pages.
Kramosil. I, Michalek. J, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326 – 334.
Mutlu. A, Gurdal. U, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362 – 5373.
Mutlu. A, Ozkan. K, Gu rdal. U, Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Appl. Math., 10 (2017), 655 – 667.
Mutlu. A, Ozkan. K, Gurdal. U, Fixed point theorems for multivalued mapping on bipolar metric spaces, Fixed Point Theory, (In Press).
Mutlu. A, Ozkan. K, Gurdal. U, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. App. Eng. Math., (In Press).
Park. J. H. Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22(2004), 1039 – 1046.
Schweizer. B, Sklar. A, Statistical metric spaces, Pacific J. Math., 10 (1960), 313 – 334.
Zadeh. L. A, Fuzzy sets, Inf. Control, 8 (1965), 338 – 353.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Jeyaraman M, Jeyanthi V, Mangayarkkarasi A.N

This work is licensed under a Creative Commons Attribution 4.0 International License.