Theoretical Study of Quinoline Aza Oxa Thia 17-Crown -6 Complexes: NICS Aromaticity


  • Esmael Rostami Payame Noor University
  • Nosrat Daryapour Payame Noor University
  • Roya Afsharpour Payame Noor University


Quinoline, aza oxa this 17–crown–6, NICS (0) aromaticity, Metal ion complex, theoretical study


Complexation of quinoline aza oxa this 17-crown-6 (L) with some metal cations (K+, Na+, Li+, Mg2+) was studied through computational methods. Hartree-Fock method was employed to identify structure and thermodynamical binding constant of crown and metal ions complexes. The calculations were conducted at the HF/6-31g and HF/Lanl2DZ levels of theory. According to the obtained data Mg2+ ion formed the most stable complex with crown and equilibrium binding constants of complex formation has the following order: L. K+ < L. Na+ <L. Li+ <L. Mg2+. In order to verify the physical properties of free crown and complexes some important physical properties including band gap, energy, hardness and dipole moments were obtained and discussed. The electron distribution over the free crown and its L. Mg2+ complex was studied which showed that in the free crown and its L. Mg2+ complex, Highest Occupied Molecular Orbital (HOMO) were distributed mainly over the sulfur atom. For both of them Lowest Unoccupied Molecular Orbital (LUMO) were distributed over aromatic rings. HOMO and LUMO orbitals in L. Mg2+ complex was not distributed over Mg2+ ion and the ion remained bare. Also, atomic charges and charge transfer between donors and acceptors were studied using natural bond orbital analysis (NBO). The charge of Mg2+ ion in the complex is 1.69095 e. In order to study the effect of complex formation and structural changes on the aromaticity of rings, Nuclear Independence Chemical Shift (NICS) and aromaticity were obtained and discussed.


Download data is not yet available.


(a) C.J. Pedersen, Synthesis and characterization of crown ethers, J. Am. Chem. Soc. 89 (1967) 7017-7036; (b) C.J. Pedersen, Crystalline salt complexes of macrocyclic polyethers, J. Am. Chem. Soc. 92 (1970) 386-391.

(a) K. Zhu, L. Wu, X. Yan, B. Zheng, M. Zhang, and F. Huang, Anion‐Assisted Complexation of Paraquat by Cryptands Based on Bis (m‐phenylene)‐[32] crown‐10, Chem. Eur. J. 16 (2010) 6088-6098; (b) Du, J.; Huang, Z.; Yu, X.-Q.; Pu, L. Highly selective fluorescent recognition of histidine by a crown ether–terpyridine–Zn (II) sensor, Chem. Commun. 49 (2013) 5399-5401.

(a) V. P. Boricha, S. Patra, Y. S. Chouhan, P. Sanavada, E. Suresh, P. Paul, Synthesis, Characterisation, Electrochemistry and Ion‐Binding Studies of Ruthenium (II) and Rhenium (I) Bipyridine/Crown Ether Receptor Molecules, Eur. J. Inorg. Chem. (2009) 1256-1267; (b) H. Sharghi, R. Khalifeh A. R. S. Beni, Synthesis of new lariat ethers containing polycyclic phenols and heterocyclic aromatic compound on graphite surface via mannich reaction, J. Iran. Chem. Soc. 7 (2010) 275-288.

(a) K. Zhu, L. Wu, X. Yan, B. Zheng, M. Zhang, and F. Huang, Anion‐Assisted Complexation of Paraquat by Cryptands Based on Bis (m‐phenylene) ‐ [32] crown‐10. Chem. Eur. J. 16 (2010) 6088-6098; (b) L.F. Lindoy, New super-and supramolecular receptor systems-cages, chains, squares and dendrimers incorporating macrocycles as structural elements, J. Iran. Chem. Soc. 1 (2004) 1-9.

(a) U.H.F. Bunz, Y. Rubin, Tobe, Y. Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks. Chem. Soc. Rev. 28 (1999) 107-119; (b) J.S. Moore, Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 30 (1997) 402-413; (c) E. Mattia, S. Otto, Supramolecular systems chemistry, Nature Nanotechnol. 10 (2015) 111-119.

C.M. Hong, R.G. Bergman, K.N. Raymond and F.D. Toste, Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res., 51 (2018) 2447-2455.

T. Jiang, X. Wang, J. Wang, G. Hu, X. Ma, Humidity-and Temperature-Tunable Multicolor Luminescence of Cucurbit [8] uril-Based Supramolecular Assembly. ACS Appl. Mater.Interfaces, 11 (2019) 14399-14407.

(a) J.-M. Lehn, J.L. Atwood, J.E.D. Davies, D.D. McNicol, F. Vögtle, D.N. Reinhoudt, In Comprehensive Supramolecular Chemistry; Pergamon: Oxford, 1996; Vol. 10; (b) Q.X. Geng, F. Wang, H. Cong, Z. Tao, G. Wei, Recognition of silver cations by a cucurbit [8] uril-induced supramolecular crown ether, Org. Biomol. Chem. 14 (2016) 2556-2562.

J. P. Majoral, A. M. Caminade, Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. Eur. J. Inorg. Chem., 2019, (2019) 1457-1475.

(a) W. Zhang, Y.-M. Zhang, S.-H. Li, Y.-L. Cui, J. Yu, Y. Li, Tunable Nanosupramolecular Aggregates Mediated by Host–Guest Complexation, Angew. Chem. 128 (2016) 11624-11628; (b) Y.Q. Yao, K. Chen, Z.Y. Hua, Q.J. Zhu, S.F. Xue, Z. Tao, Cucurbit [n] uril-based host–guest-metal ion chemistry: an emerging branch in cucurbit [n] uril chemistry, J. Incl. Phenom. Macrocycl. Chem. (2017) 1-4.

X.Y. Lou, Y.P. Li, Y.W. Yang, Gated Materials: Installing Macrocyclic Arenes‐Based Supramolecular Nanovalves on Porous Nanomaterials for Controlled Cargo Release. Biotechnology journal, 14 (2019), 1800354.

L. Türker, Interaction of Trans-Retinol And 1,1-Diamino-2,2-Dinitroethylene (FOX-7)-A DFT Treatment, To Chem. J., 3 (2019) 85-96.

(a) E. Rostami, Synthesis of New 1-Naphthol Aza Oxa Thia Crowns, Phosphorus, Sulfur Silicon Relat. Elem. 186 (2011) 1694-1701; (b) E. Rostami, Efficient Route for the Synthesis of New Dinaphthosulfoxide Aza Crowns Using Ethyleneglycol under Microwave (MW) Irradiation: Macrocyclization is Preferred to Oligomerization under MW Irradiation. Phosphorus, Sulfur Silicon Relat. Elem. 186 (2011) 1853-1866; (c) E. Rostami, M. Ghaedi, M. Zangooei, A. Zare, Synthesis of new aza thia crowns under microwave irradiation. J. Sulfur Chem. 33 (2012) 327-333; (d) M. Taghdiri, E. Rostami, Preparation and characterization of organic–inorganic adduct of dinaphtosulfide macrocyclic diamide and silicotungstic acid: study of interaction in solid and solution phase. J. Sulfur Chem. 36 (2015) 270-280.

Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

GaussView, Version 5, Roy Dennington, Todd Keith, and John Millam, Semichem Inc., Shawnee Mission, KS, 2009.

L. Yue, P. Wustelt, A.M. Sayler, F. Oppermann, M, Lein, G.G. Paulus, S. Gräfe, Strong-field polarizability-enhanced dissociative ionization. Phys. Rev. A, 98 (2018) 043418.

P. Bhattacharya, R.R. Das, R.S. Katiyar, Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films. Appl. Phys. Lett., 83 (2003) 2010-2012.

F. De Proft, N. Sablon, D.J. Tozer, P, Geerlings, Calculation of negative electron affinity and aqueous anion hardness using Kohn–Sham HOMO and LUMO energies. Faraday Discuss., 135 (2007) 151-159.



How to Cite

Rostami, E., Daryapour, N. ., & Afsharpour, R. . (2019). Theoretical Study of Quinoline Aza Oxa Thia 17-Crown -6 Complexes: NICS Aromaticity. To Chemistry Journal, 4, 25-36. Retrieved from



Research Articles

Most read articles by the same author(s)