Imidazole and its Saturated Derivatives Vs Pyrazole and it Saturated Derivatives: A Computational Study on Relative Stability

Authors

  • Krzysztof Kazimierz Zborowski Jagiellonian University

Keywords:

Imidazole, Pyrazole, Stability, Quantum Chemistry, Computational Chemistry

Abstract

Possible structures of imidazole, pyrazole, and their semi saturated and fully saturated derivatives have been studied at the DFT and ab initio computational levels. Calculations have been performed using several computational schemes (BLYP, PBE0, CAM-B3LYP, wB97XD, M06, MP2, CBS-QB3, and G4 methods have been employed) and the 6-311++G** basis set. The most stable structures for each group of studied compounds (tautomers of native imidazole and pyrazole, tautomers of their semi saturated derivatives, and fully saturated derivatives) have been determined. In general species with imidazole ring are more stable than those with pyrazole one. The discussion of this phenomenon origin, especially the influence of aromaticity as well as distributions of total charge and energy among atoms are thoroughly discussed.

Downloads

Download data is not yet available.

Author Biography

Krzysztof Kazimierz Zborowski, Jagiellonian University

Department of General Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387
Kraków, Poland

References

Katritzky, AR, Ramsden AC, Scriven E, J. K. Taylor RJK. Comprehensive heterocyclic chemistry III. A review of the literature 1995 - 2007. Elsevier, Amsterdam, 2008. www.elsevier.com/books/comprehensive-heterocyclic-chemistry-iii/katritzky/978-0-08-044991-3

Verma A, Joshi S, Singh D, Imidazole: having versatile biological activities, J. Chem.2013; 2013: Article ID 329412, 12 pages. DOI: 10.1155/2013/329412

Anam A, Abad A, Mohd A, Shamsuzzaman. (2016). Review: biologically active pyrazole derivatives. New J. Chem. 2016;41:16-41. DOI: 10.1039/C6NJ03181A

McNaught D, A. Wilkinson A, IUPAC. Compendium of chemical terminology, 2nd ed., the "Gold Book", Blackwell Scientific Publications, Oxford, 1997. goldbook.iupac.org/

Li GS, Ruiz-López MF, Zhang MS, Maigret B, Ab initio calculations of tautomer equilibrium and protonation enthalpy of 4- and 5- methyl imidazole in the gas phase: Basis set and correlation effects. J. Mol. Struct. Theochem. 1998;422(1-3):197-204. DOI: 10.1016/S0166-1280(97)00095-X

El Hammadi A, El Mouhtadi M, The theoretical determination of heats of formation, proton affinities and gas basicities of N and C-substituted pyrazoles: analysis of the substituent effects on the gas-phase basicity. J. Mol. Struct. Theochem. 2000;497(1-3):241-266. DOI: 10.1016/S0166-1280(99)00380-2

Claramunt RM, Santa Marıa MD, Infantes L, Cano FH, Elguero J, The annular tautomerism of 4(5)-phenylimidazole. J. Chem. Soc. Perkin. Trans. 2. 2002;564-568. DOI: 10.1039/B109079H

Belenkii LI, Nesterov ID, Chuvylkin ND, Quantum-chemical investigations of azoles1. Alternative electrophilic substitution mechanisms in 1,2- and 1,3-azoles. Chem. Heterocycl. Compd. (Engl. Transl.), 2013, 49, 1611-1622. DOI: 10.1007/s10593-014-1412-8

Belenkii LI, Nesterov ID, Chuvylkin ND, Quantum chemical studies of azoles 2. Thermodynamic stability of neutral molecules and intermediates formed during the electrophilic substitution of 1,2- and 1,3-azoles. Russ. Chem. Bull. Inter. Edit. 2014;63(10):2236—2242. DOI: 10.1007/s11172-014-0728-y

de la Hoz A, Sánchez-Migallón A, Mateo MC, Prieto P, Infantes L, Elguero J, The unusual transformation of an aromatic 1H-imidazole into a non-aromatic 2H-imidazole. Struct. Chem. 2005;16(5):485-490. DOI: 10.1007/s11224-005-4467-4

Alkorta I, Elguero J., Liebman JF, The annular tautomerism of imidazoles and pyrazoles: the possible existence of nonaromatic forms. Struct. Chem. 2006;17:439-444. DOI: 10.1007/s11224-006-9065-6

Blanco F, Alkorta I, Zborowski K, Elguero J, Subsitution Effects in N-pyrazole and N-imidazole derivatives along with the periodic table. Struct. Chem. 2007; 18(6):965–975. DOI: 10.1007/s11224-007-9245-z

Becke AD, Density Functional Thermochemistry. III. The role of exact exchange J. Chem. Phys. 1993; 98(7):5648-5652. DOI: 10.1063/1.464913

Lee C, Yang W, Parr RG, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 1988; 37(2):785-789. DOI: 10.1103/PhysRevB.37.785

Yanai T, Tew D, Handy N, A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004; 393(1-3):51-57. DOI: 10.1016/j.cplett.2004.06.011

Adamo C, Barone V, Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999; 110(13) 6158-6169. DOI: 10.1063/1.478522

Chai JD, Head-Gordon M, Long-Range Corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008; 10(44):6615-6620.

Zhao Y, Truhlar DG, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 2008; 120(1-3):215-241.

Møller C, Plesset MS, Note on an Approximation Treatment for Many-Electron systems. Phys. Rev. 1934; 46(7):618-622. DOI: 10.1103/PhysRev.46.618

Wood GPF, Radom L, Petersson GA, Barnes EC, Frisch MJ, Montgomery Jr. JA, A Restricted-Open-Shell Complete-Basis-Set Model Chemistry. J. Chem. Phys. 2006; 125(9):094106. DOI: 10.1063/1.2335438

Curtiss LA, Redfern PC, Raghavachari K, Gaussian-4 Theory. J. Chem. Phys. 2007; 126(8): 084108. DOI; 10.1063/1.2436888

McLean AD, Chandler GS, Contracted Gaussian-Basis Sets for Molecular Calculations. 1. 2nd Row Atoms, Z=11-18. J. Chem. Phys. 1980; 72(10):5639-5648. DOI: 10.1063/1.438980

Raghavachari K, Binkley JS, Seeger R, Pople JA, Self-Consistent Molecular Orbital Methods. 20. Basis Set for Correlated Wave-Functions. J. Chem. Phys. 1980; 72(1):650-654. DOI: 10.1063/1.438955

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam J.M, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gompert R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2009. gaussian.com

Bader RFW, Atoms in Molecules: a Quantum Theory, the International Series of Monographs of Chemistry. Clarendon Press, Oxford, 1990.

Keith TA, AIMAll, version 11.10.16. TK Gristmill Software, Overland Park, 2011. aim.tkgristmill.com/

Zborowski KK, An atoms-in-molecules study on selected tautomeric trieds. Chem. Phys. Lett. 2012; 545:144-147. DOI: 10.1016/j.cplett.2012.07.036

Kruszewski J, Krygowski TM, Definition of Aromaticity Basing on the Harmonic Oscillator Model. Tetrahedron Lett. 1972; 13(36):3839– 3842. DOI: 10.1016/S0040-4039(01)94175-9

Krygowski TM, Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of pi-Electron Systems. J. Chem. Inf. Comput. Sci. 1993; 33(1):70–78. DOI: 10.1021/ci00011a011

Schleyer PvR, Introduction: Aromaticity, Chem. Rev. 2001; 101(5):1115-1117. DOI: 10.1021/cr0103221

Schleyer PvR, Introduction: Delocalization – pi and sigma, Chem. Rev. 2001; 105(10):3433-3435. DOI: 10.1021/cr030095y

Zborowski KK, Koch A, Kleinpeter E, Proniewicz LM, Searching for aromatic chelate rings. Oxygen versus thio and seleno ligands. Z. Phys. Chem. 2014; 228(8):869-878. DOI: 10.1515/zpch-2014-0528

Popelier P, Atoms in Molecules. An Introduction. Pearson Education Limited, Harlow, 2000.

Published

2019-12-17

How to Cite

Zborowski, K. K. (2019). Imidazole and its Saturated Derivatives Vs Pyrazole and it Saturated Derivatives: A Computational Study on Relative Stability. To Chemistry Journal, 4, 47-71. Retrieved from https://purkh.com/index.php/tochem/article/view/580

Issue

Section

Research Articles