HSPA8, not C3AR1 trapped from SH-SY5Y cells: demonstrated by TLQP-21 avidin agarose affinity chromatography

HSPA8, not C3AR1 trapped by TLQP-21 in SH-SY5Y cells

Authors

  • Md. Shamim Akhter Current address: Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna-9208, Bangladesh.CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela-15782, Spain.
  • Jesus Rodriguez Requena CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela-15782, Spain

Keywords:

SH-SY5Y cells, Avidin agarose affinity chromatography, TLQP-21, C3AR1, HSPA8

Abstract

To ‘fish out’ HSPA8 as a receptor of human TLQP-21 in human neuroblastoma SH-SY5Y cell; cross-linking, affinity chromatography and mass spectrometry-based protein identification techniques were used (by our group). Before that, in rodent cells, C3AR1 was found as a receptor of rodent TLQP-21 in CHO-K1 cells (by another group). So, it was of very much interest to find out whether C3AR1 can be ‘fished out’ as a receptor of human TLQP-21 in a human SH-SY5Y cell line or not. Here PVDF membrane (which was used for immunohistochemical validation of HSPA8 in SH-SY5Y cell line) was stripped, followed by immunohistochemical validation as before under the same condition, but C3AR1 was not found to bind with human TLQP-21. The findings concluded here that in SH-SY5Y cells, HSPA8 but not C3AR1 was documented as a receptor of human TLQP-21 using avidin agarose affinity chromatography. The significance of the study is that it provides a starting point to signpost: human TLQP-21 exerts its biological activity via HSPA8 (not C3AR1) in human SH-SY5Y cells. The further readout of TLQP-21-HSPA8 signaling can be exploited to explore new horizon in diagnosis and therapies for VGF related human diseases, especially in which TLQP-21 has been shown to affect and related with thereof.

Downloads

Download data is not yet available.

References

Possenti, R., Muccioli, G., Petrocchi, P., Cero, C., Cabassi, A., Vulchanova, L., Riedl, M. S., Manieri, M., Frontini, A., Giordano, A., Cinti, S., Govoni, P., Graiani, G., Quaini, F., Ghè, C., Bresciani, E., Bulgarelli, I., Torsello, A., Locatelli, V., Sanghez, V., Larsen, B. D., Petersen, J. S., Palanza, P., Parmigiani, S., Moles, A., Levi, A., Bartolomucci, A. (2012) Characterization of a novel peripheral pro-lipolytic mechanism in mice: role of VGF-derived peptide TLQP21. Biochem J. 441 (1): 511-22

Jethwa, P. H., Warner, A., Nilaweera, K. N., Brameld, J. M., Keyte, J. W., Carter, W. G., Bolton, N., Bruggraber, M., Morgan, P. J., Barrett, P., et al. (2007) VGFderived peptide, TLQP-21, regulates food intake and body weight in Siberian hamsters. Endocrinology 148: 4044-4055

3. Bartolomucci, A., Corte, G. L., Possenti, R., Locatelli, V., Rigamonti, A. E., Torsello, A., Bresciani, E., Bulgarelli, I., Rizzi, R., Pavone, F., D'Amato, F. R., Severini, C., Mignogna, G., Giorgi, A., Schinina, M. E., Elia, G., Brancia, C., Ferri, G. L., Conti, R., Ciani, B., Pascucci, T., Dell'Omo, G., Muller, E. E., Levi, A., Moles, A. (2006) TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity, Proc. Natl. Acad. Sci. U. S. A. 103 : 14584–14589

Bartolomucci, A., Moles, A., Levi, A., Possenti, R., (2008) Pathophysiological role of TLQP-21: gastrointestinal and metabolic functions. Eat Weight Disord. 13(3): e49-54. PMID: 19011364

Stephens, S. B., Schisler, J. C., Hohmeier, H. E., An, J., Sun, A. Y., Pitt, G. S., Newgard, C. B. (2012) A VGF-derived peptide attenuates development of type 2 diabetes via enhancement of islet β-cell survival and function. Cell Metab. 16 (1): 33-43. doi: 10.1016/j.cmet.2012.05.011.

Fairbanks, C. A., Peterson, C. D., Speltz, R. H., Riedl, M. S., Kitto, K. F., Dykstra,J. A., Braun, P. D., Sadahiro, M., Salton, S. R., Vulchanova, L. (2014) TheVGF-derived peptide TLQP-21 contributes to inflammatory and nerve injuryinducedhypersensitivity. Pain 155: 1229–1237

Chen, Y. C., Pristerá, A., Ayub, M., Swanwick, R. S., Karu, K., Hamada, Y., Rice, A. S., Okuse, K. (2013) Identification of a receptor for neuropeptide VGF and its role in neuropathic pain. J BiolChem. 288 (48): 34638-46

Rizzi, R., Bartolomucci, A., Moles, A., D’Amato, F., Sacerdote, P., Levi, A., La Corte, G., Ciotti, M. T., Possenti, R., Pavone, F. (2008) The VGF-derived peptide TLQP-21: a new modulatorypeptide for inflammatory pain. Neurosci Lett 441: 129–133

Fargali, S., Garcia, A. L., Sadahiro, M., Jiang, C., Janssen, W. G., Lin, W. J., Cogliani, V., Elste, A., Mortillo, S., Cero, C., et al. (2014) The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure. FASEB J. 28: 2120–2133

Severini, C., La Corte, G., Improta, G., Broccardo, M., Agostini, S., Petrella, C., Sibilia, V., Pagani, F., Guidobono, F., Bulgarelli, I., et al. (2009) In vitro and in vivo pharmacological role of TLQP-21, a VGF-derived peptide, in the regulation of rat gastric motor functions. British journal of pharmacology 157: 984-993

Sibilia, V., Pagani, F., Bulgarelli, I., Tulipano, G., Possenti, R., Guidobono, F., (2012) Characterization of the mechanisms involved in the gastric antisecretory effect of TLQP-21, a VGF-derived peptide, in rats. Amino Acids. 42 (4): 1261-8. doi: 10.1007/s00726-010-0818-6. Epub 2010 Dec 4.

Sibilia, V., Pagani, F., Bulgarelli, I., Mrak, E., Broccardo, M., Improta, G., Severini, C., Possenti, R., Guidobono, F. (2010a) TLQP-21, a VGF-derived peptide, prevents ethanol-induced gastric lesions: insights into its mode of action. Neuroendocrinology. 92 (3): 189-97. doi: 10.1159/000319791

Sibilia, V., Pagani, F., Bulgarelli, I., Tulipano, G., Possenti, R., Guidobono, F. (2010b) Characterization of the mechanisms involved in the gastric antisecretory effect of TLQP-21, a VGF-derived peptide, in rats. Amino Acids 10.1007/s00726010-0818-6

Aguilar, E., Pineda, R., Gayta´ n, F., Sa´nchez-Garrido, M. A., Romero, M., Romero-Ruiz, A., Ruiz-Pino, F., Tena-Sempere, M., and Pinilla, L. (2013) Characterization of the reproductive effects of the Vgf-derived peptide TLQP-21 in female rats: in vivo and in vitro studies. Neuroendocrinology 98: 38–50

Pinilla, L., Pineda, R., Gaytan, F., Romero, M., Garcia-Galiano, D., SanchezGarrido, M.A., Ruiz-Pino, F., Tena-Sempere, M., and Aguilar, E. (2011) Characterization of the reproductive effects of the anorexigenic VGF-derived peptide TLQP-21: in vivo and in vitro studies in male rats. American journal of physiology Endocrinology and metabolism 300: 837-847

Razzoli, M., Bo, E., Pascucci, T., Pavone, F., D’Amato, F.R., Cero, C.,Sanghez, V., Dadomo, H., Palanza, P., Parmigiani, S., et al. (2012) Implication of the VGFderived peptide TLQP-21 in mouse acute and chronicstress responses. Behav. Brain Res. 229: 333–339

Bartolomucci, A., Possenti, R., Mahata, S. K., Fischer-Colbrie, R., Loh, Y. P., Salton, S. R. (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev. 32 (6): 755-97

Severini, C., Ciotti, M. T., Biondini, L., Quaresima, S., Rinaldi, A. M., Levi, A., Frank, C., Possenti, R. (2008) TLQP-21, a neuroendocrine VGF-derived peptide, prevents cerebellar granule cells death induced by serum and potassium deprivation. J Neurochem 104: 534-544

Cassina, V., Torsello, A., Tempestini, A., Salerno, D., Brogioli, D., Tamiazzo, L., Bresciani, E., Martinez, J., Fehrentz, J. A., Verdié, P., Omeljaniuk, R. J., Possenti, R., Rizzi, L., Locatelli, V., Mantegazza, F. (2013) Biophysical characterization of a binding site for TLQP-21, a naturally occurring peptide which induces resistance to obesity. Biochim Biophys Acta. 1828 (2): 455-60. doi: 10.1016/j.bbamem.2012.10.023. Epub 2012 Oct 30.

Cero, C., Vostrikov, V. V., Verardi, R., Severini, C., Gopinath, T., Braun, P. D., Sassano, M. F., Gurney, A., , Roth, B. L., Vulchanova, L., Possenti, R., Veglia, G., Bartolomucci, A. (2014) The TLQP-21 peptide activates the G-protein coupled receptor C3aR1 via a folding-upon-binding mechanism. Structure 22: 1744–1753

Hannedouche, S., Beck, V., Leighton-Davies, J., Beibel, M., Roma, G., Oakeley, E. J., Lannoy, V., Bernard, J., Hamon, J., Barbieri, S., Preuss, I., Lasbennes, M. C., Sailer, A. W., Suply, T., Seuwen, K., Parker, C. N., Bassilana, F. (2013) The identification of the C3a Receptor (C3AR1) as the target of the VGF derived peptide TLQP-21 in rodent cells. J Biol Chem. 20; 288(38): 27434-43. doi: 10.1074/jbc.M113.497214. Epub 2013 Aug 12.

Akhter, S. (2015). Isolation of VGF derived neuropeptide receptor. Ph D Thesis, University of Santiago de Compostela, Spain.

Akhter S, Chakraborty S, Moutinho D, AÂ lvarez-Coiradas E, Rosa I, Viñuela J, et al. (2017) The human VGF-derived bioactive peptide TLQP-21 binds heat shock 71 kDa protein 8 (HSPA8) on the surface of SH-SY5Y cells. PLoS ONE 12(9):e0185176. https://doi.org/10.1371/journal.pone.0185176.

Biedler, J. L., Helson, L., Spengler, B. A. (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33 (11): 2643–52

Biedler, J. L., Roffler-Tarlov, S., Schachner, M., Freedman, L. S. (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38: 3751–7

Ayub, M. (2012) Investigating the mechanisms of action of VGF-derived peptides in the nervous system. Ph D thesis. Imperial College, London. Print.

Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature protocols 1: 2856

Shin, B. K., Wang, H., Marie, A., Naour, F. L., Brichory, F., Jang, J. H., Zhao, R., Puravs, E., Tra, J., Michael, C. W., Misek, D. E., Hanash, S. M. (2003) Global profiling of the cell surfaceproteome of cancer cells uncovers an abundance of proteins with chaperonefunction. J. Biol. Chem. 278: 7607-7616. Epub 2002 Dec 18.

Liao, Y., Tang, L., (2014) The Critical Roles of HSC70 in Physiological and Pathological Processes. Current Pharmaceutical Design 20: 101-107

Mambula, S. S., Calderwood, S. K. (2006) Heat Shock Protein 70 is secretedfrom tumor cells by a nonclassical pathway involving lysosomalendosomes. J Immunol 177: 7849-57

Kettner, S., Kalthoff, F., Graf, P., Priller, E., Kricek, F., Lindley, I., Schweighoffer, T. (2007) EWI-2/CD316 is an induciblereceptor of HSPA8 on Human Dendritic Cells. Mol Cell Biol 27: 7718-26

Powers, M. V., Clarke, P. A., Workman, P. (2008) Dual targeting of HSC70 and HSP72 inhibits HSP90 function and Induces tumor-specific apoptosis.Cancer Cell 14: 250-62

Klos, A., Wende, E., Wareham, K. J., Monk, P. N. (2013) International Union of Pharmacology. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol. Rev. 65 (1): 500–43

Opstal-van Winden A. W., Vermeulen R. C., Peeters P. H., Beijnen J. H., van Gils C. H. (2012) Early diagnostic protein biomarkers for breast cancer: how far have we come? Breast Cancer Res. Treat. 134: 1–12

Francis, K., Lewis B. M., Akatsu H., Monk P. N., Cain S. A., Scanlon M. F., Morgan B. P., Ham J., Gasque P. (2003) Complement C3a receptors in the pituitary gland: a novel pathway by which an innate immune molecule releases hormones involved in the control of inflammation. FASEB J. 17: 2266–2268

Mamane, Y., Chung Chan, C., Lavallee, G., Morin, N., Xu, L. J., Huang, J., Gordon, R., Thomas, W., Lamb, J., Schadt, E. E., Kennedy, B. P., Mancini, J. A. (2009) The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes 58: 2006–2017

Akhter, M.S. (2017) VGF: A brief introduction to its structure, tissue distribution and functions. Bangladesh Journal of Progressive Science & Technology (BJPST). 15(2): 001-008.

Akhter, M.S., Requena, J. R. (2017) Direct binding of TLQP-21 with HSPA8 protein: demonstrated by avidin agarose affinity chromatography. 5th International Conference on Chemical Engineering, ICChE 2017, Bioengineering organized by the Department of Chemical Engineering at Bangladesh University of Engineering and Technology (BUET), 103-113.

Published

2020-08-15

How to Cite

Md. Shamim Akhter, & Jesus Rodriguez Requena. (2020). HSPA8, not C3AR1 trapped from SH-SY5Y cells: demonstrated by TLQP-21 avidin agarose affinity chromatography: HSPA8, not C3AR1 trapped by TLQP-21 in SH-SY5Y cells. To Chemistry Journal, 6, 125-131. Retrieved from https://purkh.com/index.php/tochem/article/view/746

Issue

Section

Research Articles