Embedded Tautomerism in a DADNE embedded pull-push structure- A DFT treatise

Authors

  • Lemi Türker Middle East Technical University, Department of Chemistry, Üniversiteler, Eskişehir Yolu No:1, 06800, Çankaya/Ankara, TURKEY

Keywords:

NICS, aromaticity, pull-push, tautomerism, explosives, DADNE

Abstract

1,5-Type proton tautomerism of 2-(dinitromethylene)-4,5-dinitro-2,3-dihydro-1H-imidazole structure is considered within the constraints of density functional theory at the level of B3LYP/6-311++G(d,p). One of the pentad tautomers has been found to be almost as stable as the parent structure. The local aromaticity search (NICS(0)) indicated that both of the structures have an embedded aromatic imidazole ring system, which is not expected at first sight for the parent structure and possible causes of it are sought. Also, various quantum chemical results, calculated IR, and UV spectra are obtained and discussed.

Downloads

Download data is not yet available.

References

Agrawal, J.P. (2010). High Energy Materials. Wiley-VCH Weinheim.

Reutov, O. (1970). Theoretical Principles of Organic Chemistry. Mir Pub Moscow .

Anslyn, E.V., & Dougherty, DA. (2006). Modern Physical Organic Chemistry. University Science Books Sausalito, California.

Nemeyanov, A.N., & Nemeyanov, N.A. (1977). Fundementals of Organic Chemistry. V.2.Mir Pub Moscow.

Nemeyanov, A.N., & Nemeyanov, N.A. (1976). Fundementals of Organic Chemistry, V.1. Mir Pub Moscow.

Bharatam, P.V., & Lammertsma, K. (2003). Nitro ⇄ aci-nitro tautomerism in high-energetic nitro compounds. (Ch. 3 in P.A. Politzer and J.S. Murray (Editors) Energetic Materials, Part 1: Decomposition, Crystal and Molecular Properties), Theoretical and Computational Chemistry, 12 , 61-89. https://doi.org/10.1016/S1380-7323(03)80005-5

Lammertsma, K., & Bharatam, P.V. (2000). Keto ⇌ Enol, Imine ⇌ Enamine, and Nitro ⇌ aci-Nitro tautomerism and their interrelationship in substituted nitroethylenes. Keto, imine, nitro, and vinyl substituent effects and the importance of H-bonding. J Org Chem, 65(15), 4662-4670. https://doi.org/10.1021/jo000283d

Dhaked, D.K., & Bharatam, P.V. (2013). Nitro ⇌ aci-nitro tautomerism and E/Z isomeric preferences of nitroethenediamine derivatives: A quantum chemical study. RSC advances 3 (47), 25268-25277.

Cai, H., Shu, Y., Huang, H., Cheng, B., & Li, J. (2004). Study on Reactions of 2-(dinitromethylene)-4,5- imidazolidinedione. J Org Chem, 69(13), 4369-4374. https://doi.org/10.1021/jo030395f

Stewart, ] J.J.P. (1989). Optimization of parameters for semiempirical methods I. Method. J Comput Chem, 10, 209-220. https://doi.org/10.1002/jcc.540100208

Stewart, J.J.P. (1989). Optimization of parameters for semi empirical methods II. Application. J Comput Chem, 10 , 221-264. https://doi.org/10.1002/jcc.540100209

Leach, A.R. (1997). Molecular Modeling. Longman Essex .

Fletcher, P. (1990). Practical Methods of Optimization. Wiley New York.

Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. J Phys Rev, 140,1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

Parr, R.G., & Yang, W. (1989). Density Functional Theory of Atoms and Molecules. Oxford University Press London.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

Vosko, S.H., Vilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys, 58, 1200-1211. https://doi.org/10.1139/p80-159

Lee C., Yang W., & Parr R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

SPARTAN 06. (2006). Wavefunction Inc., Irvine CA, USA,.

Gaussian 03, Revision C.02, Frisch, M. J., Trucks, G. W.; Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., Gaussian, Inc., Wallingford CT, 2004.

Dewar, M.J.S. (1969). The Molecular Orbital Theory of Organic Chemistry. McGraw-Hill New York.

Dewar, M.J.S., & Dougherty, R.C. (1975). The PMO Theory of Organic Chemistry. Plenum-Rosetta New York.

Minkin, V.I., Glukhovtsev, M.N., & Simkin, B.Y. (1994). Aromaticity and Antiaromaticity: Electronic and Structural Aspects. Wiley New York .

Schleyer, P.R., & Jiao, H. (1996). Introduction: aromaticity. Pure Appl Chem, 68, 209-218. http://dx.doi.org/10.1351/pac199668020209

Glukhovtsev, M.N. (1997). Aromaticity today: Energetic and structural criteria. J Chem Educ, 74,132-136. https://doi.org/10.1021/ed074p132

Krygowski, T.M., Cyranski, M.K., Czarnocki, Z., Hafelinger, & G., Katritzky, A.R. (2000).Aromaticity: A theoretical concept of immense practical importance. Tetrahedron, 56, 1783- 1796.

Schleyer, P.R. (2001). Introduction: Aromaticity, Chem Rev 101, 1115-1118. https://doi.org/10.1021/cr0103221

Cyranski, M.K., Krygowski, T.M., Katritzky, A.R., & Schleyer, P.R. (2002). To what extent can aromaticity be defined uniquely? J Org Chem, 67, 1333-1338. https://doi.org/10.1021/jo016255s

Schleyer, P.R., Maerker, C., Dransfeld, A., Jiao, H., & Hommes, N.J.R.E. (1996). Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J Am Chem Soc, 118, 6317-6318.

Jiao, H., & Schleyer, P.R. (1998). Aromaticity of pericyclic reaction transition structures: Magnetic evidence. J Phys Org Chem, 11, 655-662. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U

Schleyer, P.R., Kiran, B., Simion, D.V., & Sorensen, T.S. (2000). Does Cr(CO)3 complexation reduce the aromaticity of benzene? J Am Chem Soc, 122, 510–513. https://doi.org/10.1021/ja9921423

Quinonero, D., Garau, C., Frontera, A., Ballaster, P., Costa, A., & Deya, P.M. (2002). Quantification of aromaticity in oxocarbons: The problem of the fictitious “nonaromatic” reference system. Chem Eur J, 8, 433-438. https://doi.org/10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-T

Patchkovskii, S., & Thiel, W. (2002). Nucleus-independent chemical shifts from semiempirical calculations. J Mol Model, 6, 67-75. https://doi.org/10.1007/PL00010736

Anbu, V., Vijayalakshmi, K.A. , Karunathan, R., Stephen, A. D., & Nidhin, P.V. ( 2019). Explosives properties of high energetic trinitrophenyl nitramide molecules: A DFT and AIM analysis. Arabian Journal of Chemistry, 12(5) , 621-632. https://doi.org/10.1016/j.arabjc.2016.09.023

Badders, N.R., Wei, C., Aldeeb, A.A., Rogers, W.J., & Mannan, M.S. (2006). Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. Journal of Energetic Materials, 24, 17-33. https://doi.org/10.1080/07370650500374326

Downloads

Published

2020-08-15

How to Cite

Lemi Türker. (2020). Embedded Tautomerism in a DADNE embedded pull-push structure- A DFT treatise. To Chemistry Journal, 6, 199-208. Retrieved from https://purkh.com/index.php/tochem/article/view/844

Issue

Section

Research Articles