Dried Orange Peel: A potential Bio sorbent for Removal of Cu (II) and Cd (II) Ions from Aqueous Solution

Authors

  • Awash Yerga Ministry of Industry, Addis Ababa, Ethiopia
  • Gashaw Nigussie Armauer Hansen Research Institute
  • Yemane Werede Ministry of Industry, Addis Ababa, Ethiopia
  • Fozia Ibrahim Armauer Hansen Research Institute

Keywords:

Orange peel, bio sorption, adsorption isotherm, adsorption capacity, Cu 2, Cd 2,

Abstract

Bio sorption is one of potential alternative conventional technologies for the removal of metal ions from aqueous solutions due to its low cost, high efficiency, minimization of chemical or biological sludge, regeneration of bio sorbents and possibility of metal recovery. Therefore the aim of this study was to study effect of operational parameters on dried orange peel:  a potential bio sorbent for removal of Cd (II) and Cu (II) ions from aqueous solution. Batch adsorption experiments were performed as a function of pH, contact time, solute concentration and adsorbent dose and the residual metal ion concentrations were determined using flame Atomic Absorption Spectrometer (FAAS).The results indicate that optimum conditions for copper (II) and cadmium (II) adsorption were achieved with contact time of 120 minutes and dose of orange peel 2 g at pH 2 and 6 respectively. The orange peel yielded a maximum adsorption efficiency of 99.23% for copper (II) ion and 97.75% for cadmium (II). The fitness of the bio sorption data for Langmuir and Freundlich adsorption models was investigated and the calculated equilibrium data fitted well to both Langmuir with correlation coefficient (R2) of 0.988 for Copper (II) and 0.979 for cadmium (II) ion and Freundlich with correlation coefficient (R2) of 0.995 for copper (II) ion and 0.998 for cadmium (II) ion. The maximum adsorption capacity (qmax) of orange peel was found to be 4.15 mg/g for copper (II) ion and 2.45 mg/g for cadmium (II) ion.

Downloads

Download data is not yet available.

References

Ahluwalia, Sarabjeet Singh, & Goyal, Dinesh. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource technology, 98(12), 2243-2257. https://doi.org/10.1016/j.bio rtech.2005.12.006

Åkesson, Agneta, Julin, Bettina, & Wolk, Alicja. (2008). Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer research, 68(15), 6435-6441. https://doi.org/10.1158/0008-5472.CAN-08-0329

Alkan, Mahir, & Doğan, Mehmet. (2001). Adsorption of copper (II) onto perlite. https://doi.org/10.1006/jcis .2001.7796

Antunes, Wallace M, Luna, Aderval S, Henriques, Cristiane A, & da Costa, Antonio Carlos A. (2003). An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electronic Journal of Biotechnology, 6(3), 174-184.

Benaissa, H. (2006). Screening of new sorbent materials for cadmium removal from aqueous solutions. Journal of hazardous materials, 132(2-3), 189-195. https://doi.org/10.1016/j.jhazmat.2005.07.085

Benjamin, Mark M, & Leckie, James O. (1981). Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. Journal of colloid and Interface Science, 79(1), 209-221. https://doi.org/10.1016 /0021-9797(81)90063-1

Brown, Pauline, Jefcoat, I Atly, Parrish, Dana, Gill, Sarah, & Graham, Elizabeth. (2000). Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Research, 4(1), 19-29. https://doi.org/10.1016/S1093-0191(00)00004-6

Bulut, Yasemin, & Baysal, Zübeyde. (2006). Removal of Pb (II) from wastewater using wheat bran. Journal of environmental management, 78(2), 107-113. https://doi.org/10.1016/j.jenvman.2005.03.010

Dönmez, G Çetinkaya, Aksu, Z, Öztürk, A, & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process biochemistry, 34(9), 885-892. https://doi.org/10.1016/S0032-9592(99)00005-9

Ekmekyapar, Fatma, Aslan, Ali, Bayhan, Y Kemal, & Cakici, Avni. (2006). Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis hoffm. Journal of hazardous materials, 137(1), 293-298. https://doi.org/10.1016/j.jhazmat.2006.02.003

Esposito, A, Pagnanelli, F, Lodi, A, Solisio, C, & Veglio, F. (2001). Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy, 60(2), 129-141. https://doi.org/10.1016/S0304-386X(00)00195-X

Feng, Ning-Chuan, Guo, Xue-Yi, & Liang, Sha. (2009). Kinetic and thermodynamic studies on biosorption of Cu (II) by chemically modified orange peel. Transactions of Nonferrous Metals Society of China, 19(5), 1365-1370. https://doi.org/10.1016/S1003-6326(08)60451-3

Freundlich, Herbert. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470. https://doi.org/10.1515/zpch-1907-5723

Gaballah, I, Goy, D, Kilbertus, G, & Thauront, J. (1994). Decontamination of industrial effluents for environment protection and recycling of metals. Resources, Conservation and Recycling, 10(1-2), 97-106. https://doi.org/10.1016/0921-3449(94)90042-6

Hawari, Alaa H, & Mulligan, Catherine N. (2006). Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bioresource technology, 97(4), 692-700. https://doi.org/10.1016/j. biortech.2005.03.033

Ho, Y-Sh, & Wang, Ch-Ch. (2004). Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochemistry, 39(6), 761-765. https://doi.org/10.1016/S0032-9592(03)00184-5

Ho, Yuh-Shan, & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water research, 34(3), 735-742. https://doi.org/10.1016/S0043-1354(99)00232-8

Ho, Yuh-Shan, & Ofomaja, Augustine E. (2006). Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochemical Engineering Journal, 30(2), 117-123. https://doi.org/10.1016/j.bej. 2006.02.012

Jak, RG, Maas, JL, & Scholten, MC Th. (1996). Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing fresh water plankton communities in enclosures. Water Research, 30(5), 1215-1227. https://doi.org/10.1016/0043-1354(95)00272-3

Jaramillo, J, Gómez-Serrano, V, & Alvarez, PM. (2009). Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones. Journal of Hazardous Materials, 161(2-3), 670-676. https://doi.org/10.1016/j.jhazmat.2008.04.009

Juang, RS, Wu, FC, & Tseng, RL. (1997). The ability of activated clay for the adsorption of dyes from aqueous solutions. Environmental Technology, 18(5), 525-531. https://doi.org/10.1080/09593331808616568

Kiran, Bala, Kaushik, Anubha, & Kaushik, CP. (2007). Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chemical Engineering Journal, 126(2-3), 147-153. https://doi.org/10.1016/j.cej.2006.09.002

Kurniawan, Tonni Agustiono, Chan, Gilbert YS, Lo, Wai-hung, & Babel, Sandhya. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the total environment, 366(2-3), 409-426. https://doi.org/10.1016/j.scitotenv.2005.10.001

Langmuir, Irving. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004

Larous, S, Meniai, A-H, & Lehocine, M Bencheikh. (2005). Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination, 185(1-3), 483-490. https://doi.org/10.1016/j.desal.2005.03.090

Lebeau, T, Bagot, D, Jézéquel, K, & Fabre, B. (2002). Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture. Science of the total environment, 291(1-3), 73-83. https://doi.org/10.1016/S0048-9697(01)01093-2

Machado, R, Santos, C, Correia, MJN, & Carvalho, JR. (2003). Biosorption of copper by grape stalks and pine bark biomasses. ejmp & ep (European Journal of Mineral Processing and Environmental Protection), 3(1), 108-118.

Mallick, Nirupama. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. biometals, 15(4), 377-390. https://doi.org/10.1023/A:1020238520948

Mansour, Fatima, Al-Hindi, Mahmoud, Yahfoufi, Rim, Ayoub, George M, & Ahmad, Mohammad N. (2018). The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Reviews in Environmental Science and Bio/Technology, 17(1), 109-145. https://doi.org/10.1007/s11157-017-9456-8

Martinez, Maria, Miralles, Núria, Hidalgo, Soraya, Fiol, Núria, Villaescusa, Isabel, & Poch, Jordi. (2006). Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials, 133(1-3), 203-211. https://doi.org/10.1016/j.jhazmat.2005.10.030

Matheickal, Jose T, Yu, Qiming, & Woodburn, Gavin M. (1999). Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum. Water Research, 33(2), 335-342. https://doi.org/10.1016/S0043-1354(98)00237-1

Mohan, Dinesh, Pittman Jr, Charles U, & Steele, Philip H. (2006). Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent. Journal of colloid and interface science, 297(2), 489-504. https://doi.org/10.1016/j.jcis.2005.11.023

Nouri, Loubna, Ghodbane, Ilhem, Hamdaoui, Oualid, & Chiha, Mahdi. (2007). Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. Journal of hazardous materials, 149(1), 115-125. https://doi.org/10.1016/j.jhazmat.2007.03.055

Pérez-Marín, AB, Zapata, V Meseguer, Ortuno, JF, Aguilar, M, Sáez, J, & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of hazardous materials, 139(1), 122-131. https://doi.org/10.1016/j.jhazmat.2006.06.008

Rao, K Srinivasa, Anand, S, & Venkateswarlu, P. (2010). Cadmium adsorption from aqueous solution with agricultural waste biosorbent Syzygium cumini L leaf powder: Equilibrium and kinetic studies. Korean J Chem Eng. doi, 10.

Rao, Karanam Srinivasa, Anand, Sashi, & Venkateswarlu, Paladugu. (2010). Adsorption of cadmium (II) ions from aqueous solution by Tectona grandis LF (teak leaves powder). BioResources, 5(1), 438-454.

Rao, KS, Anand, S, & Venkateswarlu, P. (2010). Psidium guvajava L leaf powder—a potential low-cost biosorbent for the removal of cadmium (II) ions from wastewater. Adsorption Science & Technology, 28(2), 163-178. https://doi.org/10.1260/0263-6174.28.2.163

Reddad, Zacaria, Gerente, Claire, Andres, Yves, & Le Cloirec, Pierre. (2002). Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environmental science & technology, 36(9), 2067-2073. https://doi.org/10.1021/es0102989

Ricou-Hoeffer, P, Lecuyer, I, & Le Cloirec, P. (2001). Experimental design methodology applied to adsorption of metallic ions onto fly ash. Water Research, 35(4), 965-976. https://doi.Org/10.1016/S0043-1354 (00)00341-9

Salim, Radi, Al‐Subu, MM, & Sahrhage, Erika. (1992). Uptake of cadmium from water by beech leaves. Journal of Environmental Science & Health Part A, 27(3), 603-627. https: //doi.Org /10.10 8 0 /10 9 34 529209375751

Srivastava, Vimal Chandra, Mall, Indra Deo, & Mishra, Indra Mani. (2008). Removal of cadmium (II) and zinc (II) metal ions from binary aqueous solution by rice husk ash. Colloids and surfaces A: physicochemical and engineering aspects, 312(2-3), 172-184. https://doi.org/10.1016/j.colsurfa.2007.06.048

Stylianou, Marinos A, Hadjiconstantinou, Michalis P, Inglezakis, Vasilis J, Moustakas, Konstantinos G, & Loizidou, Maria D. (2007). Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column. Journal of Hazardous Materials, 143(1-2), 575-581. https://doi.org/10.1016/j.jhazmat. 2006.09.096

Volesky, Bohumil. (2003). Sorption and biosorption: BV Sorbex.

Yu, Li Jia, Shukla, Shyam S, Dorris, Kenneth L, Shukla, Alka, & Margrave, JL. (2003). Adsorption of chromium from aqueous solutions by maple sawdust. Journal of hazardous materials, 100(1-3), 53-63. https://doi.org/10.1016/S0304-3894(03)00008-6

Yu, Qiming, Matheickal, Jose T, Yin, Pinghe, & Kaewsarn, Pairat. (1999). Heavy metal uptake capacities of common marine macro algal biomass. Water research, 33(6), 1534-1537. https://doi.org/10.1016 /S0043-1354(98)00363-7

Zhu, Bo, Fan, Tongxiang, & Zhang, Di. (2008). Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. Journal of hazardous materials, 153(1-2), 300-308. https://doi.org/10. 1016/j.jhazmat.2007.08.050.

Downloads

Published

2020-12-31

How to Cite

Yerga, A., Nigussie, G., Werede, Y. ., & Ibrahim, F. (2020). Dried Orange Peel: A potential Bio sorbent for Removal of Cu (II) and Cd (II) Ions from Aqueous Solution . To Chemistry Journal, 7, 124-142. Retrieved from https://purkh.com/index.php/tochem/article/view/921

Issue

Section

Research Articles