Investigating the Influence of Titanium ion Substituted Cd-Al-Mn Ferrite Composites on the Structural, DC Resistivity and Electrical Switching


  • Sanjeev Dalawai Department of Electronics, Shivaji University, Kolhapur- 416 004, (MS) India
  • Mohamed Aly Saad Aly Department of Electronics and Information Science, Miami College of Henan University, Kaifeng 475000, P.R. China
  • Ashok B. Gadkari Department of Physics, GKG College, Kolhapur- 416 012, (MS) India
  • Pramod N. Vasambekar Department of Electronics, Shivaji University, Kolhapur- 416 004, (MS) India


Hopping length., CCNR type electrical switching, Curie temperature, DC Resistivity


A nano-crystalline spinel ferrite (NC-SF) composites were synthesized using the standard ceramic method and were analyzed by several analytical techniques. The XRD characterization validates the production of a cubic spinel arrangement. Furthermore, XRD analysis showed that the bond length and ionic radii enlarge on A-sites and reduce slightly on B-sites with the increase in the content of Mn-Ti. Moreover, XRD analysis revealed that the crystallite size of Cd-Ti-Al-Mn lies in the range of 22.83-24.44nm. Additionally, the porosity of the Cd-Ti-Al-Mn ferrite samples reduces with increasing the content of Mn-Ti. The FT-IR spectra show one high-frequency band and three low-frequency bands in the range of 400-600 cm-1. The grain size was observed by SEM images to be uniformly distributed and lies within the range of ~0.66-1.18μm. The DC resistivity of the ferrite composite became greater with increasing the content of Mn-Ti. Moreover, the composite behaves electrically as semiconductor. The investigated Cd-Ti-Al-Mn ferrite composites exhibited current controlled negative resistance (CCNR) type of electrical switching characteristics at room temperature. The value of the switching electric field was noted to enlarge with the increase in the content of Mn-Ti. Additionally, there was no ageing observed for electrical switching property in the investigated ferrite composites


Download data is not yet available.


Finch, G. I., Sinha A. P. B., Sinha K. P. (1957) Crystal Distortion in Ferrite-Manganties, Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences 242: 28-35.

Dolcet, P., Diodati, S., Zorzi F., Voepel P., Seitz C., Smarsly B. M., Mascotto S., Nestola F., Gross S. (2018) Very fast crystallisation of MFe2O4 spinel ferrites (M = Co, Mn, Ni, Zn) under low temperature hydrothermal conditions: a time-resolved structural investigation, Green Chemistry 20: 2257-2268.

Hu, W., Qin, N., Wu, G, Lin, Y., Li, S., Bao, D. (2012) Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances, Journal of American Chemistry Society 134: 14658-14661.

Ahlawat, A., Satapathy, S., Shirolkar, M. M., Li, J., Khan, A. A, Deshmukh, P., Wang, H., Choudhary, R. J., Karnal, A. K. (2018) Tunable Magnetoelectric Nonvolatile Memory Devices Based on SmFeO3/P(VDF-TrFE) Nanocomposite Films, ACS Applied Nano Materials 1: 3196-3203.

Hao, A., Ismail, M., He, S., Qin, N., Huang, W., Wu, J., Bao, D. (2018) Improved unipolar resistive switching characteristics of Au-doped nickel ferrite magnetic thin films for nonvolatile memory applications, Journal of Alloys and Compounds 732: 573-584.

Kefeni, K. K., Mamba, B. B., Msagati, T. A. M. (2017) Application of spinel ferrite nanoparticles in water and wastewater treatment: a review, Separation and Purification Technology 188: 399-422.

Amiri, M., Akbari, A., Ahmadi, M., Pardakhti, A., Salavati-Niasari, M. (2017) Synthesis and in vitro evaluation of a novel magnetic drug delivery system; proecological method for the preparation of CoFe2O4 nanostructures, Journal of Molecular Liquids 249: 1151-1160.

Amiri, M., Salavati-Niasari, M. Pardakhty, A., Ahmadi, M., Akbari, A. (2017) Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery, Materials Science and Engineering C 76: 1085-1093.

Omer, A. M., Tamer, T. M., Khalifa, R. E., Gaber, S. A., Mohy Eldin, M. S. (2019), Smart Biopolymer Hydrogels Developments for Biotechnological Applications. In: Mondal MIH (ed) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer Nature, Cham, Switzerland pp 1515-1536.

Mohapatra, S., Rout, S. R., Maiti, S., Maiti, T. K., Panda, A. B. (2011) Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs, Journal of Materials Chemistry 21: 9185- 9193.

Verma, A., Alam, M. I., Chatterjee, R., Goel, T. C., Mendiratta, R. G. (2005) Development of a New Soft Ferrite Core for Power Applications, Journal of Magnetism and Magnetic Materials 300: 500-501.

Manikandan, V., Kim, J. H., Mirzaei, A., Kim, S. S., Vigneselvan, S., Singh, M., Chandrasekaran, J. (2019) Effect of temperature on gas sensing properties of lithium (Li) substituted (NiFe2O4) nickel ferrite thin film, Journal of Molecular Structure 1177: 485-490.

Gadkari, A. B., Shinde, T. J., Vasambekar, P. N. (2011) Ferrite Gas Sensors, IEEE Sensors Journal 11: 849-861.

Yang, Y., Li, J., Zhao, J., Chen, J., Gan, G., Wang, G., He, L. (2019) Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications, Journal of Alloys and Compounds 778: 8-14.

Harris, V. G., Geiler, A., Chen, Y., Yoon, S. D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P. V., Zuo, X., Patton, C. E., Abe, M., Acher, O., Vittoria, C. (2009) Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials 321: 2035-2047.

Dalawai, S. P., Gadkari, A. B., Shinde, T. J., Vasambekar, P. N. (2013) Effect of sintering temperature on structural and electrical switching properties of Cadmium ferrite, Advanced Materials Letters 4: 586- 590.

Dalawai, S. P., Gadkari, A. B., Vasambekar, P. N. (2015) Electrical switching in cadmium ferrite with different rare-earth ions (Sm3+, Y3+, and La3+), Rare Metals 34: 133-136.

Nazir, M. A., Ul-Islam, M., Ali, I., Ali, H., Ahmad, B., Ramay, S. M., Raza, N., Ehsan, N. M. F., Ashiq, M. N. (2016) Structural, electrical and dielectric properties of multiferroics and spinel ferrite composites, Journal of Electronic Materials 45, 1065-1072.

Chavan, A. R., Birajdar, S. D., Chilwar, R. R., Jadhav, K. M. (2018) Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films, Journal of Alloys and Compounds 735: 2287-2297 (2018).

Ahsan, M. Z., and Khan, F. A. (2017) Study of Structural, Electrical and Magnetic Properties of Manganese Doped Cobalt Ferrite Nanoparticles with Non-stoichiometric Composition, Journal of Physical Science and Application 7: 30-37.

Kim H., Wesstrom, B., Alam, S., Ouchi, T., Azimi, G., Neelameggham, N. R., Wang, S., Guan, X. (2018), Rare Metal Technology 2018. Springer Nature, New York, pp. 5.

Mirzaee, O. (2014) Influence of PbO and TiO2 additives on the microstructure development and magnetic properties of Ni–Zn soft ferrites, Journal of King Saud University 26: 152-158.

Ravinder, D. (2000) Electrical transport properties of cadmium substituted copper ferrites, Materials Letters 43: 129-138.

Iyer, R., Desai, R., Upadhyay, R. V. (2009) Low temperature synthesis of nanosized Mn1-xCdxFe2O4 ferrites, Indian Journal of Pure and Applied Physics 47: 180-185.

Sattar, A. A., El-Sayed, H. M., El-Tabey, M. M. (2005) The effect of Al-substitution on structure and electrical properties of Mn-Ni-Zn ferrites, Journal of Materials Science 40: 4873-4879.

Rao, B. P., Rao, K. H., Rao, T. V., Padurarua, A., Caltun, O. F. (2005) DC resistivity and dielectric studies on Ti4+ substituted Ni-Zn ferrites, Journal of Optoelectronics and Advanced Materials 7: 701-704.

Zuo, X., Barbiellini, B., Vittoriaa, C. (2004) Calculation of exchange constants in manganese ferrite (MnFe2O4), Journal of Magnetism and Magnetic Materials 306: 272-276.

Yamashiro, T. (1973) Electrical Switching and Momory Phenomena in CuFe2O4, Japanese Journal of Applied Physics 12: 148-149.

Kamble, P. N., Vaingankar, A. S., Kulkarani, V. R. (1990) Structural and magnetic studies on slow cooled and quenched Cd sub (x) Cu sub (1-x) Fe sub (2) O sub (4) system, Indian Journal of Pure & Applied Physics 28: 542-545.

Vasambekar, P. N., Kolekar, C. B., Vaingankar, A. S. (1999) Electrical switching in CdxCo1− xFe2-yCryO4 system, Materials Research Bulletin 34: 863-868.

Saija, K. G., Joshi, U. S., Lakhani, V. K., Modi, K. B. (2009) CCNR type high field instability in Ti4+-substituted Mn–Zn ferrites, Journal of Physics D: Applied Physics 42: 165402-165407.

Patange, S. M., Shirsath, S. E., Jadhav, S. S., Lohar, K. S., Mane, D. R., Jadhav, K. M. (2010) Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites, Materials Letters 64: 722-724.

Patange, S. M., Shirsath, S. E., Lohar, K. S., Jadhav, S. S., Kulkarni, N., Jadhav, K. M. (2010) Electrical and switching properties of NiAlxFe2−xO4 ferrites synthesized by chemical method, Physica B: Condensed Matter 406: 663- 668.

Chhaya, U. V., Mistry, B. V., Bhavsar, K. H., Gadhvi, M. R., Lakhani, V. K., Modi, K. B., Joshi, U. S. (2011) Structural parameters and resistive switching phenomenon study on Cd0.25 Co0.75 Fe2O4 ferrite thin film, Indian Journal of Pure & Applied Physics 49: 833-840.

Kochmański, M., Paszkiewicz, T., Wolski, S. (2013) Curie–Weiss magnet: a simple model of phase transition, European Journal of Physics 34: 1555–1573.

Neifel'd, E. A., Arkhipov, V. E., Ugryumova, N. A., Korolev, A. V., Mukovskii, Y. M. (2007) Temperature dependence of the activation energy of manganite conductivity in the paramagnetic phase, Bulletin of the Russian Academy of Sciences: Physics 71: 1559-1560.

Loria, K. K. and Sinha, A. P. B. (1963) Curie temperature of magnetic materials using simple equipment, Indian Journal of Pure & Applied Physics 1: 115-165.

Bhosale, J. L., Kulkarni, S. N., Sasmile, R. B., Chougule, B. K. (1996) Susceptibility and magnetization studies of Gd3+ substituted Mg-Cd ferrites, Bulletin of Materials Science 19: 767-774.

Kadam, G. B., Shelke, S. B., Jadhav, K. M. (2010) Structural and electrical properties of Sm3+ Doped Co- Zn Ferrite, Journal of Electronic and Electrical Engineering 1: 15-25.

Zhong, H. and Zhang, H. (2004) Effects of different sintering temperature and Mn content on magnetic properties of NiZn ferrites, Journal of Magnetism and Magnetic Materials 283: 247-250.

Standley, K. J. (1990), Oxide Magnetic Materials, Claredon Press, Oxford.

Dogra, A., Kumar, R., Kumar, N., Sen, P., Singh, M. (2004) Structural and magnetic studies of NiMn0.05TixMgxFe1.95−2xO4 ferrite, Materials Science and Engineering: B 110: 243-250.

Scherrer, P. (1918) Messages from the Society of Sciences, Gottingen, Journal of Mathematical Physics 2: 98-100.

Langford JI and Wilson AJC (1978) Scherrer after sixty years A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography 11: 102-113.

Smit, J. and Wijn, H. P. J. (1957) Ferrites, Wiley, New York, pp. 233.

Gadkari, A. B., Shinde, T. J., Vasambekar, P. N. (2011) Synthesis, characterization and magnetic properties of La3+ added Mg–Cd ferrites prepared by oxalate co-precipitation method, Journal of Alloys and Compounds 509: 966-972.

Globus, A., Pascard, H., Cagan, V. (1977) Distance between magnetic ions and fundamental properties in ferrites, Journal de Physique Colloques 38: 163-168.

Lide, D. R. (1995), CRC Handbook of chemistry and Physics, 76th ed. CRC press, London.

Ghazanfar, U., Siddiqi, S. A., Abbas, G. (2005) Structural analysis of the Mn–Zn ferrites using XRD technique, Materials Science and Engineering B 118: 84-86.

Shirsath, S. E., Jadhav, S. S., Toksha, B. G., Patange, S. M., Jadhav, K. M. (2011) Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4, Journal of Applied Physics 110: 013914-013922.

Waldron, R. D. (1955) Infrared Spectra of Ferrites, Physical Review 99: 1727-1735.

Ravinder, D. (1999) Far-infrared spectral studies of mixed lithium–zinc ferrites, Materials Letters 40: 205-208.

Hemeda, O. M. (2004) IR spectral studies of Co0.6Zn0.4MnxFe2_xO4 ferrites, Journal of Magnetism and Magnetic Materials 281: 36-41.

Laidler, K. J. (1987), Chemical Kinetics, 3th Ed, Harper & Row, pp 42.

Hajalilou, A., Kamari, M. H., Shameli, K. (2017) Dielectric and electrical characteristics of mechanically synthesized Ni-Zn ferrite nanoparticles, Journal of Alloys and Compounds 708: 813-826.

Lakshman, A., Rao, P. S. V. S., Rao, B. P., Rao, K. H. (2005) Electrical properties of In3+ and Cr3+ substituted magnesium–manganese ferrites, Journal of Physics D Applied Physics 38: 673-678.

Chaudhuri, S. P., Sarkar, P., Chakraborty, A. K. (1999) Electrical resistivity of porcelain in relation to constitution, Ceramics International 25: 91-99.

Ajmal, M. and Maqsood, A. (2007) Influence of zinc substitution on structural and electrical properties of Ni1-xZnxFe2O4 ferrites, Materials Science and Engineering: B 139: 164-170.

Pandya, M. P., Modi, K. B., Joshi, H. H. (2005) Study of conduction mechanism in aluminium and magnesium co-substituted lithium ferrite, Journal of Materials Science 40: 5223-5232.

Yu, H., Kim, M., Kim, Y., Lee, J., Kim, K. K., Choi, S. J., Cho, S. (2014) Al-doped ZnO as a switching layer for transparent bipolar resistive switching memory, Electronic Materials Letters 10: 321-324.

Sawa, A. (2008) Resistive switching in transition metal oxides, Materials Today 11: 28-36.




How to Cite

Dalawai, S., Aly Saad Aly, M., Gadkari, A. ., & Vasambekar, P. . (2020). Investigating the Influence of Titanium ion Substituted Cd-Al-Mn Ferrite Composites on the Structural, DC Resistivity and Electrical Switching. To Chemistry Journal, 7, 106-123. Retrieved from



Research Articles