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Abstract  

 

Photolysis of water is one of the most reliable methods of producing hydrogen fuel to meet the global 

demand for clean and cheap energy. Over reliance on fossil fuels and hydro-electricity is unsustainable in the 

era of depleting resources and climate change. Artificial photosynthesis tries to mimic the natural process of 

photosynthesis that takes place in plants and some bacteria to produce oxygen gas and hydrogen protons. 

This review proposes the process of mimicking the plant photosynthesis to produce hydrogen gas for fuel. The 

extension to photosynthesis generates twice the amount of hydrogen gas compared to the amount of oxygen 

produced. Among the many advantages of using solar water splitting method, there is zero carbon dioxide 

emission, sufficient water resources in many parts of the world, plenty of sunlight energy, and renewability.  

This review paper provides detailed mechanisms of how the photolysis of water can be used to produce 

hydrogen fuel. The design of the photocatalysts and solar  cell, as the photolysis device, has also been 

discussed in detail.   
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1. Introduction  

The universe is largely powered by hydrogen gas as fuel. The Solar System gets its energy from hydrogen 

combustion in the Sun. This makes hydrogen a long term dependable source of energy that can meet any 

conceivable large scale demand. Currently the world population is increasing at a fast rate and so is the 

demand for energy. Indeed, it is predicated that the world population is expected to reach 11 billion people in 

the year 2100 [1]. The current population is just above 7.7 billion people.  This will lead to high demand for 

energy among other resources. The developing countries are already facing enormous problems to produce 

enough energy due to climate change and rising environmental concern on the use of fossil fuels. Clean cheap 

energy sources are not easy to find. Any country’s energy production has a direct impact on its economic 

development. The world is currently heavily reliant on fossil fuels such as coal, natural gas and oil. These fossil 

energy sources have been directly associated with global warming, air pollution and many respiratory 

diseases.  Furthermore, oil and gas are localized energy sources; hence their availability is heavily dependent 

on local political situation.   

The greatest challenge the whole world is facing is to produce cheap renewable energy that can be stored 

easily without causing any adverse environmental effects. Of course the most abundant cheap, clean, 

renewable energy source is sunlight.  Plants, since time memorial have harvested this energy to produce their 
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own food and as well as food for animals. Mimicking the processes that plants use to produce food, it is 

possible to use the same sunlight energy to produce abundant environmentally friendly renewable energy that 

can easily be stored.  

Photosynthesis is a photo-chemical process by which photons and charges in semiconductors such as 

chlorophyll a and chlorophyll b interact to split water to produce oxygen and hydrogen. The hydrogen will 

normally combine with carbon from carbon dioxide to form sugars. Photolysis is the splitting of water into 

hydrogen and hydrogen protons by light. Photosynthesis occurs in nature in green plants, algae and 

cyanobacteria. Artificial photosynthesis mimics the natural process of photosynthesis and also seeks to extend 

the natural process.  

Sunlight is part of electromagnetic radiation, which is emitted by the sun. The amount of sunlight reaching the 

earth’s surface can be calculated from the eccentricity of the Earth's elliptic orbit and the attenuation by the 

Earth's atmosphere. The carrier of sunlight energy is the photons. To efficiently utilize sunlight energy to 

produce renewable energy, it is very important that these high energy photons are directed to light absorbers 

that can then create a charge separation between excited electrons and holes.  Separation of electrons and 

holes from excitons is used in photovoltalic cells to generate voltage and current, hence electricity. Although it 

is possible to generate electricity in this way, large scale storage and hence portability of this energy is a 

challenge. Because of this problem, people are still turning to fossil fuels. Instead of using the photons to 

directly produce electricity, the harvested solar energy can be converted to chemical energy, such as 

hydrogen. This stored chemical energy can later be used to produce electricity. This will help overcome the 

current challenge.  

Many researchers have managed to split water into hydrogen and oxygen by electrolysis using high voltage 

electricity of the order of 3 x 1024 V/mole to break the bond energy (493 kJ/mole) of water molecules at very 

high cost, generally unsustainable for large scale production of hydrogen [2,3]. This study proposes the use of 

cheap mode of hydrogen gas production such as the use of cheap organic polymers such as Polyaniline 

(PANI) in the place of chlorophyll. Chlorophyll is generally unstable polymer when used in vitro hence the use 

of other polymers. PANI has high environmental stability, easy polymerization and low cost of monomers [4]. 

The advantages of using sunlight are that it is free and abundant. It is readily available in most parts of the 

world. Water is also abundant in oceans. One of the objectives of this study is to suggest affordable and 

effective photocatalysts. This will in turn lower the cost of harvesting hydrogen gas from water and hence be 

viable for large scale production. 

 In this paper a novel way of harvesting hydrogen gas by using sunlight to split water (H2O) into hydrogen gas 

and oxygen gas with the help of two photocatalysts is proposed. Furthermore, the design of the model 

artificial photosynthesis device that can be used for large scale production has been described. The hydrogen 

gas can be used for many purposes including as fuel to power machines and drive economies of the world. 

The combustion of hydrogen in air as fuel is environmentally friendly as it produces water as a byproduct with 

no carbon dioxide. Currently there is a growing demand for hydrogen as a source of energy for automobiles 

such as cars, buses, scooters, aeroplane, trams, trains, ships, rockets, trucks, and others. 

2. The Main Contributors to Global Warming 

According to the report by the Intergovernmental Panel on Climate Change (IPCC) of the United Nations  

published in 2014, 65% of global warming is caused by the emission of carbon dioxide from the use of fossil 

fuels and industrial processes [5]. Forest and other land use contribute 11%. Thus carbon dioxide alone 

contributes 76% to global warming (Fig. 1). Other contributors include Nitrious Oxide at 6% of which the 

combustion of fossil fuels is part of the contributors.  Fluorinated gases (F-gases), which can stay in the 

atmosphere for hundreds of years, contribute 2% to global warming. It is clear that fossil fuel use is the 
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primary source of CO2 and major contributor to global warming. Fig. 1 summarizes the contributors to global 

warming. 

 

Figure 1 Main contributors to global warming [5]. 

3. Global Energy Needs 

There is high demand for energy worldwide due to increasing population. There are too many controversies 

on how best to produce the energy without having adverse impacts on the environment. Due to the effects of 

global warming, it appears that the future energy production will mainly be driven by decarburization policies.  

This will mainly be achieved by constructing energy efficient appliances, houses and focusing on renewable 

energy sources. Nuclear energy has many drawbacks especially in the management of the  power plant and 

nuclear waste [6]. The main renewable sources at the moment are wind and solar power. Other renewable 

energies include wind, wave or tidal, ocean thermal energy, geothermal energy, biomass and hydraulic energy.   

Majority of renewable energy sources are very unpredictable since they rely heavily on meteorological 

parameters. Wind and solar power varies depending on the year, season, day or even hour. And sometimes 

even hydro-electricity can be affected by rainfall in a given season, case in point southern African countries are 

enforcing load shedding due to low water levels in the dams along the Zambezi River in 2019. On the other 

hand, hydrogen produced by photolysis of water or gas reforming has massive energy storage potential.  

Hydrogen can be stored in solids (metal hydrates), liquid and gas state (tanks), which can later be used in the 

production of electricity. The combustion of hydrogen in air as fuel is environmentally friendly as it produces 

water as a byproduct. 
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Figure 2 Global energy needs in the baseline scenario; decomposition by end-use fuel (left) and 

decomposition of electricity needs by sector (right) (Adapted from Després, J., 2015 [7]). 

The global energy requirement is expected to rise from 79 000 TWh (in 2000) to 152 000 TWh in 2050 

(respectively 186 000 TWh in 2100) (Fig. 2) [7]. It is clear from the graph that electricity will have the fastest 

growth almost fourfold between the year 2000 to 2050 (Fig. 2). Even though there is a slight increase in 

hydrogen consumption, it shows that the technologies to produce enough hydrogen as a source of fuel are far 

lagging behind than any other energy sources. Ideally, with the right mind set, hydrogen being renewable and 

cleanest energy source should exceed fossil fuels and hydroelectricity. The biggest consumers of electricity by 

2100 will be services, industries, transport and residential areas (Fig. 2).  

4. The Role of Photons in Photolysis 

 Electron promotion from HOMO levels to LUMO levels is achieved through the supply of  energy from 

photons of the appropriate wavelengths. The energy of the photons must match the energy of the band gap 

of the semiconductor. This means that the kinetic energy gained by the electron must equal the band gap 

energy. This analysis can be explained by the photoelectric effect governed by the photoelectric equation 

below. 

maxKhf                          ------   (1) 

Where hf  is photon energy, ɸ is work function and Kmax is maximum kinetic energy of the most energetic 

electron. 

In this case  

ɸ = 0, since promoted electrons are initially on the surface of valence band (HOMO level). Hence we have  
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If we express equation (1a) in terms of momentum,  
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Where Pphot is momentum of photon, Pelec is momentum of electron and v is velocity of the electron. 

Energy of photon must equal the band gap of the semiconductor for electron to jump from HOMO to LUMO 

levels. 
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The graph of wavelength of incident photon against band gap is depicted in Figure. 3.  

Further, relating equations 1a and 2 we get  
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The graph of the velocity of promoted electron against band gap is depicted in Fig. 4 and 5. 

 

Figure 3 Wavelength of incident photon plotted against the matching band gap of semi-conductor  
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Figure 4 Velocity of promoted electrons plotted against the band gap they can cross  

 

Figure 5 Wavelength of photons plotted against velocity of electrons (m/s) and band gap (eV) of energy.  

5. The Role of Chlorophyll a and b 

In general, Chlorophyll is divided into two main types namely Chlorophyll a (CA) and Chlorophyll b (CB). Both 

chlorophylls are characterized by a Porphyrin head that is largely hydrophilic and a tail that is hydrophobic.  In 

the process of photosynthesis CB complements CA.  
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However, they both absorb approximately the same amount of energy, however, at different wavelengths. CB 

is the donor molecule while CA is the acceptor molecule (Fig. 6 and 7). The role of CB is to inject electrons into 

the conduction band of CA at longer wavelengths, though CA can also generate its own electrons at shorter 

wavelengths. CB absorbs light at 454 nm and 644 nm whilst CA absorbs light at 419 nm and 662.5 nm.   

The energy absorbed in the blue region (450–485 nm, 2.64–2.75 eV) is largely for promotion of electrons from 

HOMO levels to LUMO levels, whilst the energy absorbed in the red region (625–740 nm, 1.65–2.00 eV) is for 

electron promotion and largely for thermal excitation of water molecules, which plays a crucial role in water  

splitting in the presence of the photocatalyst and excited electrons. Both energies are important for 

photosynthesis to take place. CA passes the excited electrons to the first photocatalyst which splits the water  

as an anode electrode. 

 

Figure 6 Spectral absorbance of chlorophyll a 

 

Figure 7 Spectral absorbance of chlorophyll b 
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5.1. Chemical Structures of Selected Semiconducting Polymers 

The chemical structures of selected semiconductors that include Chlorophyll a, Chlorophyll b are shown in 

Figures 8.  

 

 

 

Figure 8 Chemical structures of chlorophyll a and chlorophyll b 

 

 

 

 

                  

 

 

Figure 9 Chemical structure of (a) water molecule showing partial charges and bond angle, and (b) 

Manganese - Calcium -Oxide [8].  
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5.2.  The Process of Artificial Photosynthesis  

Artificial photosynthesis starts with the process of absorption of photons that excite electrons in the 

semiconductor. The anode photocatalyst receives the excited electrons then interacts with the adsorbed water 

molecules. Two water molecules are split by the extraction of oxygen atoms by the anode as four hydrogen 

protons and four electrons are set free. The hydrogen protons are attracted to the cathode photocatalyst. The 

process involves redox reactions.  

5.2.1.  Reducing Agents 

A reducing agent is also known as a donor molecule. The reducing molecule donates electrons to the acceptor 

molecule. A donor molecule generally has a low affinity for electrons. The majority charge carriers in donor 

molecules are holes [9]. A table of semiconducting organic and inorganic reducing agents is given in Table 1. 

5.2.2.  Oxidizing Agents 

An oxidizing agent is also known as an acceptor molecule. The molecule accepts electrons from the donor. An 

acceptor molecule generally has a high affinity for electrons. The majority charge carriers in acceptor 

molecules are electrons. A table of semiconducting organic and inorganic reducing and oxidizing agents are 

given in Table 1. 

Table 1: Some reducing and oxidizing agent semiconductors and their band gaps with a comparison with 

Chlorophyll a (CA) and Chlorophyll b (CB) HOMO and LUMO levels.  

Donor Semiconductor 

(Oxidizing agent) 

Band 

Gap 

(eV) 

Difference with 

CB at 

(1.93 or 2.73) 

Acceptor 

Semiconductor 

(Reducing agent) 

Band 

Gap 

(eV) 

Difference with 

CA at 

(1.87 or 2.96) 

P3HT 2.1 0.17 lower TiO2 3.2 0.24 upper 

PANI 2.5 -0.23 upper ZnO 3.2 0.24 upper 

MBIS 1.5 -0.43 lower SnO2 3.8 0.84 upper 

PCPDTBT 1.4 -0.53 lower PCBM 2.5 -0.46 upper 

MDMO-PPV 2.2 0.27 lower CdSe (at 300K) 1.74 -0.13 lower 

P(NDI2OD-2T) 1.5 -0.43 lower PbSe 0.8 -1.07 lower 

PDBPyTT 1.6 -0.33 lower CuIn5Se8 (300K) 1.13 -0.74 lower 

CdTe 2.4 -0.33 upper CuIn5Se8 (at 10K) 1.23 -0.64 lower 

CuInS2 1.5 -0.43 lower ZnTPP 2.9 -0.06 upper 

Squarylium dye III 2.0 0.07 lower ZnPc 1.84 -0.03 lower 

 

From Table 1, we can combine some molecules to achieve dual band gap to match CA and CB.  
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6. Mimicking Chlorophyll a (CA) and Chlorophyll b (CB) 

It is important to note the key characteristics of acceptor molecule (Chlorophyll a) and donor molecule 

(Chlorophyll b): (i) acceptor molecule should have dual band gap at both short and long wavelengths, ideally 

2.96 eV and 1.87 eV, (ii) the donor molecule should have dual band gap at both short and long wavelengths, 

ideally 2.73 eV and 1.93 eV, (iii) good hydrophobicity for increased environmen tal stability, (iv) High charge 

(electron) mobility, and (v) the acceptor and donor molecules must be semiconductors having LUMO levels 

that match or have only a small difference whilst the difference of their HOMO levels must be large to allow 

dissociation of excitons. Table 2 is an extract from Table 1 of possible combinations that can mimic CA and CB.  

Table 2: Chlorophyll a and Chlorophyll b Mimic Molecules 

Chlorophyll a Mimic Chlorophyll b Mimic 

TiO2 and ZnPc Squarylium dye III and CdTe 

ZnO and CdSe P3HT and PANI 

TiO2 and CdSe  MDMO-PPV and PANI 

ZnO and ZnPc  Squarylium dye III and PANI 

 

6.1.  Water Redox in Light-dependent Reaction 

From the general point of view, water reduction is the loss of oxygen by the water molecule. It is also referred 

to as water oxidation due to the loss of electrons by the water molecules. Overall, two water molecules lose 

oxygen to the manganese complex which cause the manganese complex to change from lower oxidation state 

to higher states. The shifts to higher states by the manganese complex cause the complex to become unstable 

and hence decompose to the lower original state which is more stable. The decomposition evolves out an 

oxygen gas molecule. The main reason for decomposition is the poor participation of Manganes e in the 

shared bonding electrons with the many number of oxygen atoms. The electrons rather spend more time on 

the two oxygen side thereby strengthening the oxygen-to-oxygen bond than on the manganese side. The 

manganese complex has been identified as Manganese (IV) Calcium Oxide (Mn4CaO) and other closely related 

species of manganese (Fig. 9). The manganese complex in this case becomes the catalyst as it remains  

unchanged after the reaction.  

The calcium in the manganese complex has a high affinity for electrons and receives electrons from the 

hydrophobic tail of Chlorophyll a. Chlorophyll a receives electrons from Chlorophyll b through donor – 

acceptor relationship. It is important to note that, generally, porphyrin compounds tend to form face-to-face 

aggregates [10], resulting in porphyrin rings facing each other and the hydrophobic tails facing outwards. This 

implies that both chlorophyll a and b do not make contact with water and are therefore not directly involved 

in water splitting. When the calcium in the manganese complex receives an electron, it develops a net 

negative charge which causes the nearby manganese atom to develop a partial positive charge. Manganese 

has a high affinity for oxygen. Hence the partial positive charge on manganese enhances i ts bonding with the 

partial negative charge of oxygen from water.  

6.2.  The Anode Photocatalyst Design  

A photocatalyst is a material that accelerates a light dependent chemical or physical reaction without itself 

being altered in the process. An anode photocatalyst attracts and interacts with negative charged particles 
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that include partially negatively charged oxygen atoms in water molecules.  The natural photocatalyst for 

oxygen evolution (OE) has been identified as Manganese Calcium Oxide complex or sometimes referred to as 

Calcium Manganese Oxide complex. The complex includes different oxidation states of the complex. Some 

common complexes are Mn2CaO4, Mn3Ca2O8, Mn4CaO, Mn4CaO2, Mn4CaO3, Mn4CaO8, Mn4Ca2O8, and 

Mn5CaO8 [11] The presence of the Manganese Calcium Oxide complex has been confirmed by X -ray 

diffraction spectroscopy [12]. The Manganese Calcium Oxide complex is capable of playing the dual role of 

being a reducing and oxidizing agent. It oxidizes CA by gaining electrons and reduces water by gaining 

oxygen. As the water loses oxygen (reduction) it also loses electrons (oxidation), hence the process may be 

described as redox reaction. 

6.3.  The Cathode Photocatalyst Design  

A cathode photocatalyst is a material that attracts and interacts with positively charged particles such as 

partial positive hydrogen atoms from water molecules, or the free hydrogen protons during the 

photoexcitation and water splitting process. The cathode photocatalyt may play any one of the two r oles vis a 

vis splitting water and then evolve out hydrogen gas or simply concentrate hydrogen protons coming from 

the anode and then evolve out hydrogen gas.  A good cathode for hydrogen evolution should be non-reactive 

when in contact with hydrogen and should be a majority electron carrier. Candidate for this could include 

relatively cheap compounds such as TiO2, ZnO, and SnO [13]. The two photo-electrodes can be applied on one 

device or on isolated devices.    

6.4.  Designing Artificial Photosynthesis Solar Cell   

The main aim of artificial photosynthesis is to mimic as much as possible the processes that take place in 

plants during photosynthesis. In order to achieve this there is a need to select donor and acceptor materials 

that should be able to interact with sunlight and release sufficient electrons at both short and long 

wavelengths. The electrons must interact with the two photocatalysts. The anode photocatalyst, interacts with 

water and splits it into protons and oxygen gas. The cathode photocatalyst interacts with protons to evolve 

hydrogen gas. The general properties of a photocatalyst include large surface area or rough surface for 

enhanced interaction with water and electrons, should be made of hydrophilic molecules, having matching or 

a small difference in conduction bands or LUMO levels with the acceptor molecules for easy transfer of 

electrons. The electrodes should be of infinitesimal areas and made to alternate for easy flow of protons from 

anode to the cathode (Fig. 10 and 11). This is important especially for stagnant water.    

 

Figure 10 Structure of solar cell for water splitting and production of hydrogen and oxygen gasses.  
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6.5.   Redox Reactions with the use of Mn4CaO Anode as Catalyst  

Mn4CaO + H2O                                Mn4CaO2 + 2H+ + 2e-   ------- (oxidation of catalyst) 

Mn4CaO2 + H2O                                Mn4CaO3 + 2H+ + 2e-  ------- (oxidation of catalyst) 

Mn4CaO3                             Mn4CaO + O2   ------ (reduction of catalyst) 

2H2O                        4H+ + 4e- + O2     ------- (overall redox of water) 

6.6.  Cathode (Reduction) Equation [14] 

4H+ + 4e-                            2H2 

6.7.  Overall Reaction with the use of two Catalysts 

2H2O                           2H2 + O2 

It should be noted that the reaction produces double the amount of hydrogen gas to oxygen gas, which 

makes hydrogen gas harvesting more suitable for large scale production compared to oxygen.  

 

Fig. 11. Schematic diagram for solar hydrogen via photocatalytic water splitting system (PC). Adapted with 

permission from Osterloh, F. E. and Parkinson, B. A., 2011 [15]. Copyright 2011 Materials Research Society 

7. Conclusion and Outlook 

There is no doubt that the high human global population will demand high energy. The current unsusta inable 

energy production is having an adverse impact on the climate and environment and is not meeting the energy 
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demands. This review has presented the fundamental methods of producing hydrogen as a clean and 

sustainable energy source. Comparisons have been made between natural photosynthesis and artificial 

photosynthesis in the process of water splitting.  

Solar driven photoelectrolysis is the only ideal way of producing hydrogen cleanly. The process currently is 

facing many challenges due to the high cost of catalysis. There is an urgent need, through computer  

modelling, to design new cheap catalyst for production of hydrogen [16]. Further, there is need to develop a 

cathode catalyst that can split water (as opposed to depending on the anode to do the splitting) as this would 

more than double the production of oxygen and hydrogen gasses.  
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