Any L-States Solutions of The Modified Schrodinger Equation with Generalized Hellmann–Kratzer Potential Model in The Symmetries of NRNCQM

  • Abdelmadjid Maireche Sciences Faculty, University of M’sila, Algeria
Keywords: Hellmann–Kratzer Potential Model, Nonrelativistic Noncommutative Quantum Mechanics,, Star Product And Generalized Bopp’s Shift Method, Schrodinger Equation

Abstract

In the present research paper, the approximate analytical solutions of the modified radial Schrodinger equation (MSE) have been obtained with a newly proposed potential called generalized Hellmann–Kratzer potential (GHKP) model by using the improved approximation scheme to the centrifugal term for any l-states. The potential is a superposition of the Hellmann–Kratzer potential model and new terms proportional with (1/ r3, 1/ r4,  exp (-ar)/r2 and exp (-ar)/r3), appears as a result of the effects of noncommutativity properties of space and phase on the Hellmann–Kratzer potential model. We applied the generalized Bopp’s shift method and standard perturbation theory, in the nonrelativistic noncommutative three-dimensional real space phase (NC: 3D-RSP) instead to solving MSE directly with star product. The bound state energy eigenvalues for the some diatomic molecules such as, N2, CO, NO and CH  and obtained in terms of the generalized the Gamma function, the discreet atomic quantum numbers ((j, n, l, s, and m)), two infinitesimal parameters(a, b) which are induced automatically by position-position and phase-phase noncommutativity properties, in addition to, the dimensional parameters (V1, V, a, re, De) of GHKP model. Furthermore, we have shown that the corresponding Hamiltonian operator in (NC: 3D-RSP) symmetries is the sum of the Hamiltonian operator of the HKP model and two operators, the first one is the modified spin-orbit interaction while the second is the modified Zeeman operator for the previous diatomic molecule.

Downloads

Download data is not yet available.

Author Biography

Abdelmadjid Maireche, Sciences Faculty, University of M’sila, Algeria

Laboratory of Physical and Chemical Materials, Physics Department

References

Kratzer, Die ultraroten Rotationsspektren der Halogenwasserstoffe, Zeitschrift ffir Physik, 3 (1920) 289. https://doi.org/10.1007/BF01327754

J Sadeghi, Factorization Method and Solution of the Non-Central Modified Kratzer Potential ACTA PHYSICA POLONICA A 112 (2007) 23

R. J. LeRoy and R. B. Bernstein, Dissociation Energy and Long‐Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels. The Journal of Chemical Physics 52(8) (1970) 3869–3879. doi:10.1063/1.1673585

O. Bayrak, I. Boztosun and H. Ciftci, Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. International Journal of Quantum Chemistry 107(3) (2006) 540–544. doi:10.1002/qua.21141

S. dong, G. H. Sun and S. H. Dong, Arbitrary l-wave solutions of the Schrödinger equation for the screen Coulomb potential, International Journal of Modern Physics E 22(06) (2013) 1350036.doi:10.1142/s0218301313500365

S. Ikhdair and R. Sever, On solutions of the Schrödinger equation for some molecular potentials: wave function ansatz. Open Physics, 6(3 (2008) .doi:10.2478/s11534-008-0060-y

E. Z. Liverts, E. G. Drukarev, R. Krivec and V. B. Mandelzweig, Analytic presentation of a solution of the Schrödinger equation, Few-Body Systems 44(1-4) (2008) 367–370. doi:10.1007/s00601-008-0328-1

A. N. Ikot, E. Maghsoodi, S. Zarrinkamar and H. Hassanabadi, Relativistic Spin and Pseudospin Symmetries of Inversely Quadratic Yukawa-like plus Mobius Square Potentials Including a Coulomb-like Tensor Interaction, Few-Body Systems, 54(11) (2013) 2027–2040. doi:10.1007/s00601-013-0701-6

B. O. Edet, U.S. Okorie, A. T. Ngiangia and A. N. Ikot, Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian J Phys (2019). doi:10.1007/s12648-019-01477-9

C. O. Edet, K. O. Okorie, H Louis and N. A. Nzeata-Ibe, Any l-state solutions of the Schrodinger equation interacting with Hellmann–Kratzer potential model. Indian J Phys (2019). https://doi.org/10.1007/s12648-019-01467-x

S. Capozziello, G. Lambiase, G. Scarpetta, Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 39 (2000) 15

P.-M. Ho and H.-C. Kao, Noncommutative Quantum Mechanics from Noncommutative Quantum Field Theory. Physical Review Letters 88(15) (2002). doi:10.1103/physrevlett.88.151602

M. Darroodi, H. Mehraban and H. Hassanabadi, The Klein–Gordon equation with the Kratzer potential in the noncommutative space. Modern Physics Letters A 33 No. 35 (2018) 1850203. doi:10.1142/s0217732318502036

Abdelmadjid Maireche, Solutions of Two-dimensional Schrodinger Equation in Symmetries of Extended Quantum Mechanics for the Modified Pseudoharmonic Potential: an Application to Some Diatomic Molecules, J. Nano- Electron. Phys. 11 No 4, 04013 (2019). DOI: https://doi.org/10.21272/jnep.11(4).04013

P. Gnatenko, Parameters of noncommutativity in Lie-algebraic noncommutative space. Physical Review D 99(2) (2019) 026009-1. doi:10.1103/physrevd.99.026009

Abdelmadjid Maireche, The Klein–Gordon Equation with Modified Coulomb Potential Plus Inverse-Square–Root Potential in Three-Dimensional Noncommutative Space. To Physics Journal, 3 (2019) 186-196. Retrieved from https://purkh.com/index.php/tophy/article/view/489

P. Gnatenko and V. M. Tkachuk, Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity. Physics Letters A 381(31) (2017) 2463–2469. doi:10.1016/j.physleta.2017.05.056

O. Bertolami; J. G. Rosa; C. M. L. De aragao; P. Castorina and D. Zappala,, Scaling of varialbles and the relation between noncommutative parameters in noncommutative quantum mechanics, Modern Physics Letters A 21(10) (2006) 795–802. doi:10.1142/s0217732306019840

Abdelmadjid Maireche, A Recent Study of Excited Energy Levels of Diatomics for Modified more General Exponential Screened Coulomb Potential: Extended Quantum Mechanics. J. Nano- Electron. Phys. 9(3) (2017) 03021. DOI 10.21272/jnep.9(3).03021

E. F. Djemaï and H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space. Commun. Theor. Phys. (Beijing, China). 41(6) (2004) 837–844. doi:10.1088/0253-6102/41/6/837

Yi YUAN, LI Kang, WANG Jian-Hua and CHEN Chi-Yi, Spin-1/2 relativistic particle in a magnetic field in NC phase space, Chinese Physics C 34(5) (2010) 543–547. doi:10.1088/1674-1137/34/5/005

O. Bertolami and P. Leal: Aspects of phase-space noncommutative quantum mechanics. Physics Letters B 750 (2015) 6–11. doi:10.1016/j.physletb.2015.08.024

C. Bastos; O. Bertolami; N. C. Dias, and J. N. Prata, Weyl–Wigner formulation of noncommutative quantum mechanics. Journal of Mathematical Physics 49(7) (2008) 072101. doi:10.1063/1.2944996

J. Zhang, Fractional angular momentum in non-commutative spaces, Physics Letters B, 584(1-2) (2004) 204–209. doi:10.1016/j.physletb.2004.01.049

J. Gamboa, M. Loewe and J. C. Rojas: Noncommutative quantum mechanics, Phys. Rev. D 64 (2001) 067901. DOI: https://doi.org/10.1103/PhysRevD.64.067901.

M. Chaichian, Sheikh-Jabbari and A. Tureanu, Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED, Physical Review Letters 86(13) (2001) 2716–2719. doi:10.1103/physrevlett.86.2716.

Abdelmadjid Maireche: New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank’s Scales, J. Nano- Electron. Phys. 8(1) (2016) 01020-1 - 01020-7. DOI: 10.21272/jnep.8(1).01020

Abdelmadjid Maireche, New Bound State Energies for Spherical Quantum Dots in Presence of a Confining Potential Model at Nano and Plank’s Scales, NanoWorld J. 1(4) (2016) 122-129. doi: 10.17756/nwj.2016-016

J. Wang and K. Li, The HMW effect in noncommutative quantum mechanics. Journal of Physics A: Mathematical and Theoretical 40(9) (2007) 2197–2202.doi:10.1088/1751-8113/40/9/021

K. Li and J. Wang, The topological AC effect on non-commutative phase space. The European Physical Journal C 50(4) (2007) 1007–1011.doi:10.1140/epjc/s10052-007-0256-0

Abdelmadjid Maireche, A Complete Analytical Solution of the Mie-Type Potentials in Non-commutative 3-Dimensional Spaces and Phases Symmetries, Afr. Rev Phys. 11 (2016) 111-117.

Abdelmadjid Maireche, A New Nonrelativistic Investigation for the Lowest Excitations States of Interactions in One-Electron Atoms, Muonic, Hadronic and Rydberg Atoms with Modified Inverse Power Potential, International Frontier Science Letters 9 (2016) 33-46. DOI: https://doi.org/10.18052/www.scipress.com/IFSL.9.33

Abdelmadjid Maireche, New quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases, Lat. Am. J. Phys. Educ. 9(1) (2015)1301.

Abdelmadjid Maireche, A New Model for Describing Heavy-Light Mesons in The Extended Nonrelativistic Quark Model Under a New Modified Potential Containing Cornell, Gaussian And Inverse Square Terms in The Symmetries Of NCQM. To Physics Journal, 3, (2019) 197-215. Retrieved from https://purkh.com/index.php/tophy/article/view/500

R. L. Greene and C. Aldrich, Variational wave functions for a screened Coulomb potential, Physical Review A 14(6) (1976) 2363–2366.doi:10.1103/physreva.14.2363

S.H. Dong, W.C. Qiang, G.H. Sun, V.R. Bezerra, Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential, J. Phys. A 40 (2007) 10535. https://doi.org/10.1088/1751-8113/40/34/010

S. Gradshteyn and I. M. Ryzhik: Table of Integrals, Series and Products, 7th. Ed.; Elsevier, edited by Alan Jeffrey (University of Newcastle upon Tyne, England) and Daniel Zwillinger (Rensselaer Polytechnic Institute USA) 2007.

M. Hamzavi, K. E. Thylwe and A. A. Rajabi, Approximate Bound States Solution of the Hellmann Potential. Commun. Theor. Phys. 60(1), 1–8 (2013). doi:10.1088/0253-6102/60/1/01

Abdelmadjid Maireche, Effects of Two-Dimensional Noncommutative Theories on Bound States Schrödinger Diatomic Molecules under New Modified Kratzer-Type Interactions, International Letters of Chemistry, Physics and Astronomy, Vol. 76, 1-11, 2017. https://doi.org/10.18052/www.scipress.com/ILCPA.76.1

C. Berkdemir, A. Berkdemir and J. Han, Bound state solutions of the Schrödinger equation for modified Kreutzer’s molecular potential, Chemical Physics Letters 417(4) (2006) 326–329. doi:10.1016/j.cplett.2005.10.039

Published
2019-12-17
How to Cite
Maireche, A. (2019). Any L-States Solutions of The Modified Schrodinger Equation with Generalized Hellmann–Kratzer Potential Model in The Symmetries of NRNCQM. To Physics Journal, 4, 16-32. Retrieved from https://purkh.com/index.php/tophy/article/view/521
Section
Research Articles