Maho KODAMA
Department of Biology, Waseda University, Tokyo, Japan
Publications
-
Commentary
Quantum disturbance reproductions utilizing the Gross Pitaevskii condition: High-execution figuring and new mathematical benchmarks
Author(s): Maho KODAMA*
We present superior and high-exactness mathematical reenactments of quantum choppiness displayed by the Gross–Pitaevskii condition for the time-advancement of the plainly visible wave capacity of the framework. The hydrodynamic simple of this model is a stream where the thickness is missing and all rotational stream is conveyed by quantized vortices with indistinguishable topological line-design and dissemination. Mathematical reenactments start from an underlying state containing an enormous number of quantized vortices and follow the tumultuous vortex communications prompting a vortex-tangle tempestuous state. The Gross–Pitaevskii condition is settled utilizing an equal (MPI-OpenMP) code dependent on a pseudo-phantom spatial discretization and second request parting for the time incorporation. We characterize four quantum-disturbance reproduction cases dependent on vario.. Read More»